
AVAILABL
E

Functional Diagrams

Pin Configurations appear at end of data sheet.
Functional Diagrams continued at end of data sheet.
UCSP is a trademark of Maxim Integrated Products, Inc.

MAX31782 User’s Guide

Revision 0; 8/11

� �Maxim�Integrated�� � i

MAX31782 User’s Guide

Revision 0; 8/11

TABLE OF CONTENTS

SECTION 1: Overview . 1-1

SECTION 2: Architecture . 2-1

SECTION 3: System Register Descriptions . 3-1

SECTION 4: Peripheral Register Modules . 4-1

SECTION 5: Interrupts . 5-1

SECTION 6: Analog-to-Digital Converter (ADC) . 6-1

SECTION 7: I2C-Compatible Slave Interface . 7-1

SECTION 8: I2C-Compatible Master Interface . 8-1

SECTION 9: PWM Outputs . 9-1

SECTION 10: Fan Tachometer . 10-1

SECTION 11: General-Purpose Input/Output (GPIO) Pins . 11-1

SECTION 12: Timer B Module . 12-1

SECTION 13: Supply Voltage Monitor . 13-1

SECTION 14: Hardware Multiplier . 14-1

SECTION 15: Watchdog Timer . 15-1

SECTION 16: Test Access Port (TAP) . 16-1

SECTION 17: In-Circuit Debug Mode . 17-1

SECTION 18: In-System Programming . 18-1

SECTION 19: Programming . 19-1

SECTION 20: Instruction Set Summary . 20-1

SECTION 21: Utility ROM . 21-1

REVISION HISTORY . R-1

� � Maxim�Integrated�� � 1-1

MAX31782 User’s Guide

Revision 0; 8/11

SECTION 1: OVERVIEW

The MAX31782 system management microcontroller provides a complete solution for the monitoring and controlling
of complex system physical health characteristics . The MAX31782 is based on the high-performance 16-bit family of
MAXQM reduced instruction set computing (RISC) microcontrollers . The MAX31782 provides generous amounts of
flash program memory and SRAM data memory .

MAXQ is a registered trademark of Maxim Integrated Products, Inc.

CLOCK CONTROL,
WATCHDOG TIMER, AND

POWER MONITOR

CKCN

RST

WDCN

IC

IC IP

LOOP COUNTERS

DATA POINTERS

DPC

MAXQ20 CORE
SYSTEM MODULES/

REGISTERS

LC[n]

AP

APC

PSF

IMR

IIR

INTERRUPT
LOGIC

ADDRESS
GENERATION

1KWords
SRAM

DP[0], DP[1],
FP = (BP+OFFS)

ACCUMULATORS
(16)

SYSTEM CLOCK

BOOLEAN
VARIABLE

MANIPULATION

INSTRUCTION
DECODE

(src, dst TRANSPORT
DETERMINATION)

SP

STACK MEMORY
16 x 16

MAX31782 SYSTEM MANAGEMENT MICROCONTROLLER

4KWords
UTILITY ROM

32KWords
FLASH

MSDA
MSCL

I2C
MASTER

P6.n
n = 0−4

GPIO

SCL
SDA

I2C
SLAVE

6-CHANNEL TACHOMETER

TA
CH

.0

TA
CH

.1

TA
CH

.2

TA
CH

.3

TA
CH

.4

TA
CH

.5

MEMORY MANAGEMENT
UNIT (MMU)

12-BIT
ADC

ADCH

VDD

MUX

CURRENT
SOURCES

AD
0P

AD
1P

AD
2P

AD
3P

AD
4P

AD
5P

IN
TE

RN
AL

 T
EM

P 6-CHANNEL PULSE-WIDTH
MODULATOR

PW
M

.0

PW
M

.1

PW
M

.2

PW
M

.3

PW
M

.4

PW
M

.5

MAX31782

� � Maxim�Integrated� 1-2

MAX31782 User’s Guide

Revision 0; 8/11

Some of the resources and features that the MAX31782 provides for monitoring and controlling a complex system
include the following:

• Remote temperature measurement of diode connected transistors on up to 6 channels

• Accurate voltage measurement using the 12-bit analog to digital converter (ADC) on up to 6 channels

• Internal temperature sensor

• Independent slave and master I2C-compatable interfaces

• Six independent PWM outputs and tachometer Inputs

• Hardware multiplier unit

• 32KWords of flash and 1KWords of SRAM memory

• Included ROM routines that allow bootloading and in-application programming flash memory

• In-system debugging

This document is provided as a supplement to the MAX31782 IC data sheet . This user’s guide provides the information
necessary to develop applications using the MAX31782 . All electrical and timing specifications, pin descriptions, pack-
age information, and ordering information can be found in the MAX31782 IC data sheet .

�Maxim�Integrated�� � 2-1

MAX31782 User’s Guide

Revision 0; 8/11

SECTION 2: ARCHITECTURE

2 .1 Instruction Decoding .2-2

2 .2 Register Space . .2-3

2 .3 Memory Types .2-4

2 .3 .1 Flash Memory . .2-4

2 .3 .2 SRAM Memory .2-5

2 .3 .3 Utility ROM .2-5

2 .3 .4 Stack Memory . .2-5

2 .4 Program and Data Memory Mapping and Access .2-5

2 .4 .1 Program Memory Access . .2-6

2 .4 .2 Program Memory Mapping .2-6

2 .4 .3 Data Memory Access . .2-6

2 .4 .3 .1 Data Pointers .2-6

2 .4 .3 .2 Frame Pointer . .2-8

2 .4 .4 Data Memory Mapping .2-8

2 .4 .4 .1 Memory Map When Executing from Flash Memory .2-9

2 .4 .4 .2 Memory Map When Executing from Utility ROM . .2-10

2 .4 .4 .3 Memory Map When Executing from SRAM . .2-11

2 .5 Data Alignment . .2-12

2 .6 Reset Conditions .2-12

2 .6 .1 Power-On/Brownout Reset .2-12

2 .6 .2 Watchdog Timer Reset . .2-13

2 .6 .3 External Reset .2-13

2 .6 .4 Internal System Resets . .2-13

2 .7 Clock Generation .2-14

2 .8 Power Modes .2-14

LIST OF TABLES

Table 2-1 . Register-to-Register Transfer Operations . .2-4

Table 2-2 . State of Circuits During Different Modes .2-14

LIST OF FIGURES

Figure 2-1 . Instruction Word Format .2-2

Figure 2-2 . Program Memory Mapping .2-7

Figure 2-3 . Memory Map When Executing from Flash Memory .2-9

Figure 2-4 . Memory Map When Executing from Utility ROM . .2-10

Figure 2-5 . Memory Map When Executing from SRAM . .2-11

Figure 2-6 . MAX31782 State Diagram .2-13

This section contains the following information:

� � Maxim�Integrated 2-2

MAX31782 User’s Guide

Revision 0; 8/11

SECTION 2: ARCHITECTURE
The MAX31782 contains a MAXQ20 low-cost, high-performance, CMOS, fully static microcontroller with flash memory .
It is structured on a highly advanced, 16-accumulator-based, 16-bit RISC architecture . Fetch and execution operations
are completed in one cycle without pipelining, since the instruction contains both the op code and data . The highly
efficient core is supported by 16 accumulators and a 16-level hardware stack, enabling fast subroutine calling and task
switching .

Data can be quickly and efficiently manipulated with three internal data pointers . Two of these data pointers, DP0 and
DP1, are stand-alone 16-bit pointers . The third data pointer, frame pointer, is composed of a 16-bit base pointer (BP)
and an 8-bit offset register (OFFS) . All three pointers support postincrement/decrement functionality for read operations
and preincrement/decrement for write operations . For the frame pointer (FP = BP[OFFS]), the increment/decrement
operation is executed on the OFFS register and does not affect the base pointer . Multiple data pointers allow more than
one function to access data memory without having to save and restore data pointers each time .

Stack functionality is provided by dedicated memory with a 16-bit width and a depth of 16 . An on-chip memory manage-
ment unit (MMU) allows logical remapping of the program and data spaces, and thus facilitates in-system programming
and fast access to data tables, arrays, and constants located in flash memory .

This section provides details on the following topics .

1) Instruction decoding

2) Register space

3) Memory types

4) Program and data memory mapping and access

5) Data alignment

6) Reset conditions

7) Clock generation

8) Power modes

2.1�Instruction�Decoding
The MAX31782 uses the standard 16-bit MAXQ20 core instruction set, which is described in SECTION 20: Instruction
Set Summary . Every instruction is encoded as a single 16-bit word . The instruction word format is shown in Figure 2-1 .

Figure 2-1. Instruction Word Format

Bit 15 (f) indicates the format for the source field of the instruction as follows:

 If f equals 0, the instruction is an immediate source instruction . The source field represents an immediate 8-bit value .

 If f equals 1, the instruction is a register source instruction . The source field represents the register from which the
source value is read .

Bits 14 to 8 (ddddddd) represent the destination for the transfer . This value always represents a destination register . The
lower four bits contain the module specifier and the upper three bits contain the register index in that module .

Bits 7 to 0 (ssssssss) represent the source for the transfer . Depending on the value of the format field, this can either
be an immediate value or a source register . If this field represents a register, the lower four bits contain the module
specifier and the upper four bits contain the register index in that module .

FORMAT DESTINATION SOURCE

f d d d d d d d s s s s s s s s

� � Maxim�Integrated� 2-3

MAX31782 User’s Guide

Revision 0; 8/11

This instruction word format presents the following limitations .

1) There are 32 registers per register module, but only 4 bits are allocated to designate the source register and only 3
bits are allocated to designate the destination register .

2) The source field only provides 8 bits of data for an immediate value; however, a 16-bit immediate value can be
required .

The MAX31782 uses a prefix register (PFX) to address these limitations . The PFX register provides the additional bits
required to access all 32 registers within a module . The PFX register also provides the additional 8 bits of data required
to make a 16-bit immediate data source . The data that is written to the PFX register survives for only one clock cycle .
This means the write to the PFX register must occur immediately prior to the instruction requiring the PFX register . The
PFX register is cleared to zero after one cycle so it does not affect any other instructions . The write to the PFX register is
done automatically by the assembler and requires one additional execution cycle . So, while most instructions execute
in a single cycle, two cycles are needed for instructions that require the PFX register .

The architecture of the MAX31782 is transport-triggered . This means that writing to or reading from certain register
locations also causes side effects to occur . These side effects form the basis of the MAX31782’s higher level op codes,
such as ADDC, OR, and JUMP . While these op codes are actually implemented as MOVE instructions between cer-
tain register locations, the encoding is handled by the assembler and need not be a concern to the programmer . The
unused “empty” locations in the system register modules are used for these higher level op codes .

The instruction set is designed to be highly orthogonal . All arithmetic and logical operations that use two registers can
use any register along with the accumulator . Data can be transferred between any two registers in a single instruction .

2.2�Register�Space
The MAX31782 provides a total of 13 register modules broken up into two different groups . These groupings are
descriptive only, as there is no difference between accessing the two register groups from a programming perspective .
The two groups are:

1) Peripheral Registers: These are the lower six modules (Modules 0h through 5h) . The peripheral registers in the
MAX31782 are used for functionalities such as ADC, PWM outputs, tachometer inputs, GPIO, etc . The peripheral
registers are not used to implement op codes .

2) System Registers: These are modules 8h, 9h, and Bh through Fh . The system registers in the MAX31782 are used
to implement higher level op codes as well as the following common system features .

 • 16-bit ALU and associated status flags (zero, equals, carry, sign, overflow)

 • 16 working accumulator registers, each 16-bit, along with associated control registers

 • Instruction pointer

 • Registers for interrupt control, handling, and identification

 • Auto-decrementing loop counters for fast, compact looping

 • Two data pointer registers and a frame pointer for data memory access

Each system register module has 16 registers, while each peripheral register module has 32 registers . The number of
cycles required to access a particular register depends upon the register’s index within the module . The access times
based upon the register index are grouped as follows:

• The first eight registers (index 0h to 7h) in each module can be read from or written to in a single cycle .

• The second eight registers (index 8h to 0Fh) can be read from in a single cycle and written to in two cycles (by using
the PFX register) .

• The last 16 registers (10h to 1Fh) in peripheral register modules can be read or written in two cycles (always requir-
ing use of the PFX register) .

� �Maxim�Integrated� 2-4

MAX31782 User’s Guide

Revision 0; 8/11

Registers can be 8 or 16 bits in length . Some registers can contain reserved bits . The user should not write to any
reserved bits . Data transfers between registers of different sizes are handled as shown in Table 2-1 .

• If the source and destination registers are both 8 bits wide, data is copied bit to bit .

• If the source register is 8 bits wide and the destination register is 16 bits wide, the data from the source register is
transferred into the lower 8 bits of the destination register . The upper 8 bits of the destination register are set to the
current value of the PFX register; this value is normally zero, but it can be set to a different value by the previous
instruction if needed . The PFX register reverts back to zero after one cycle, so this must be done by the instruction
immediately before the one that is using the value .

• If the source register is 16 bits wide and the destination register is 8 bits wide, the lower 8 bits of the source are
transferred to the destination register .

• If both registers are 16 bits wide, data is copied bit to bit .

The above rules apply to all data movements between defined registers . Data transfer to/from undefined register loca-
tions has the following behavior:

• If the destination is an undefined register, the MOVE is a dummy operation but can trigger an underlying operation
according to the source register (e .g ., @DPn--) .

• If the destination is a defined register and the source is undefined, the source data for the transfer depends upon
the source module width . If the source is from a module containing 8-bit or 8-bit and 16-bit source registers, the
source data is equal to the prefix data as the upper 8 bits and 00h as the lower 8 bits . If the source is from a module
containing only 16-bit source registers, 0000h source data is used for the transfer .

Table�2-1.�Register-to-Register�Transfer�Operations

2.3�Memory�Types
In addition to the internal register space, the MAX31782 incorporates the following memory types:

• 32KWords of flash memory

• 1KWords of SRAM

• 4KWords of utility ROM contain a debugger and program loader

• 16-level stack memory for storage of program return addresses and general-purpose use

The memory on the MAX31782 is organized according to a Harvard architecture . This means that there are separate bus-
ses for both program and data memory . Stack memory is also separate and is accessed through a dedicated register set .

2.3.1�Flash�Memory
The MAX31782 contains 32KWords (32K x 16) of flash memory . The flash memory begins at address 0000h and is
contiguous through word address 7FFFh . The flash memory can also be used for storing lookup tables and other non-
volatile data .

The incorporation of flash memory allows the contents of the flash memory to be upgraded in the field, either by the
application or by one of the bootloaders (JTAG or I2C) . Writing to flash memory must be done indirectly by using rou-
tines that are provided by the utility ROM . See SECTION 21: Utility ROM and SECTION 18: In-System Programming for
more details .

SOURCE�REGISTER�SIZE�
(BITS)

DESTINATION�REGISTER�SIZE�
(BITS)

PREFIX�
SET?

DESTINATION�SET�TO�VALUE

HIGH�8�BITS LOW�8�BITS

8 8 X — Source [7:0]

8 16 No 00h Source [7:0]

8 16 Yes PFX [7:0] Source [7:0]

16 8 X — Source [7:0]

16 16 X Source [15:8] Source [7:0]

� � Maxim�Integrated� 2-5

MAX31782 User’s Guide

Revision 0; 8/11

2.3.2�SRAM�Memory
The MAX31782 contains 1KWords (1K x 16) of SRAM memory . The SRAM memory address begins at address 0000h
and is contiguous through word address 03FFh . The contents of the SRAM are indeterminate after power-on reset, but
are maintained during stop mode and non-POR resets .

When using the in-circuit debugging features, the highest 19 bytes of the SRAM must be reserved for saved state
storage and working space for the debugging routines . If in-circuit debug is not used, the entire 1KWords of SRAM is
available for application use .

2.3.3�Utility�ROM
The utility ROM is a 4KWord segment of memory . The utility ROM memory address begins at word address 8000h and
is contiguous through word address 8FFFh . The utility ROM is programmed at the factory and cannot be modified . The
utility ROM provides the following system utility functions:

• Reset vector (not user code reset vector)

• In-system programming (bootstrap loader) over JTAG or I2C-compatible interfaces

• In-circuit debug routines

• Routines for in-application flash programming

Following any reset, the MAX31782 automatically starts execution at the reset vector, which is address 8000h in the utility
ROM . The ROM code determines whether the program execution should immediately jump to the start of application code
(flash address 0000h), or to one of the special routines mentioned . Routines within the utility ROM are firmware-accessible
and can be called as subroutines by the application software . See SECTION 21: Utility ROM, SECTION 18: In-System
Programming, and SECTION 17: In-Circuit Debug Mode for more information on the routines provided by the utility ROM .

2.3.4�Stack�Memory
A 16-bit, 16-level on-chip stack provides storage for program return addresses and general-purpose use . The stack is
used automatically by the processor when the CALL, RET, and RETI instructions are executed, and when an interrupt is
serviced . The stack can also be used explicitly to store and retrieve data by using the @SP- - source, @++SP destina-
tion, or the PUSH, POP, and POPI instructions . The POPI instruction acts identically to the POP instruction except that
it additionally clears the INS bit .

The width of the stack is 16 bits to accommodate the instruction pointer size . On reset, the stack pointer SP initializes
to the top of the stack (0Fh) . The CALL, PUSH, and interrupt vectoring operations first increment SP and then store a
value at @SP . The RET, RETI, POP, and POPI operations first retrieve the value at @SP and then decrement SP .

The stack memory is initialized to indeterminate values upon reset or power-up . Stack memory is dedicated for stack
operations only and cannot be accessed by the MAX31782 program or data busses .

When using the in-circuit debugging features, one word of the stack must be reserved for the debugging routines . If
in-circuit debug is not used, the entire stack is available for application use .

2.4�Program�and�Data�Memory�Mapping�and�Access
The memory on the MAX31782 is implemented using a Harvard architecture, with separate buses for program and data
memory . The memory management unit (MMU) allows the MAX31782 to also support a pseudo-Von Neumann memory
map . The pseudo-Von Neumann memory map allows each of the memory segments (flash, SRAM, and utility ROM) to
be logically mapped into a single contiguous memory map . This allows all the memory segments to be accessed as
both program and memory data . The advantages the pseudo-Von Neumann memory map provides are:

• Program execution can occur from the flash, SRAM, or utility ROM memory segments .

• The SRAM and flash memory segments can both be used for data memory .

Using the pseudo-Von Neumann memory map does have one restriction . This restriction is that a particular memory
segment cannot be simultaneously accessed as both program and data memory .

� � Maxim�Integrated� 2-6

MAX31782 User’s Guide

Revision 0; 8/11

2.4.1�Program�Memory�Access
The instructions that the MAX31782 is executing reside in what is defined as the program memory . The MMU fetches
the instructions using the program bus . The instruction pointer (IP) register designates the program memory address of
the next instruction to fetch . The IP register is read/write accessible by the user software . A write to the IP register forces
program flow to the new address on the next cycle following the write . The content of the IP register is incremented
by 1 automatically after each fetch operation . From an implementation perspective, system interrupts and branching
instructions simply change the contents of the IP register and force the op code to fetch from a new program location .

2.4.2�Program�Memory�Mapping
The MAX31782’s mapping of the three memory segments (flash, SRAM, and utility ROM) as program memory is shown
in Figure 2-2 . The mapping of memory segments into program space is always the same . When referring to memory
as program memory, all addresses are given as word addresses . The 32KWord flash memory segment is located at
memory location 0000h through 7FFFh and is logically divided into two pages, each containing 16KWords . The utility
ROM is located from location 8000h through 8FFFh, followed by the SRAM memory segment at location A000h through
A3FFh . The user code reset vector, which is the first instruction of user program code that is executed, is located at
flash memory address 0000h . User program code should always begin at this address .

2.4.3�Data�Memory�Access
Data memory mapping and access control are handled by the memory management unit (MMU) . Read/write access
to data memory can be in word or in byte mode . The MAX31782 provides three pointers that can be used for indirect
accessing of data memory . The MAX31782 has two data pointers (@DPn) and one frame pointer (@BP[OFFS]) . These
pointers are implemented as registers that can be directly accessed by user software . A data memory access requires
only one system clock period .

2.4.3.1�Data�Pointers
To access data memory, the data pointers are used as one of the operands in a MOVE instruction . If the data pointer is
used as a source, the core performs a load operation that reads data from the memory location addressed by the data
pointer . If the data pointer is used as destination, the core performs a store operation that writes data to the memory
location addressed by the data pointer . Following are some examples of setting and using a data pointer .

	 move	DP[0],	#0100h		 ;	set	pointer	DP[0]	to	address	100h

	 move	Acc,	@DP[0]	 	 ;	read	data	from	location	100h

	 move	@DP[0],	Acc	 	 ;	write	to	location	100h

The address pointed to by the data pointers can be automatically incremented or decremented . If the data pointer is
used as a source, the pointer can be incremented or decremented after the data access . If the data pointer is used as
a destination, the increment or decrement can occur prior to the data access . Following are examples of using the data
pointers increment/decrement features .

	 move	Acc,	@DP[0]++		 ;	increment	DP[0]	after	read

	 move	Acc,	@DP[1]--		 ;	decrement	DP[1]	after	read

	 move	@++DP[0],	Acc		 ;	increment	DP[0]	before	write

	 move	@--DP[1],	Acc		 ;	decrement	DP[0]	before	write

� Maxim�Integrated� 2-7

MAX31782 User’s Guide

Revision 0; 8/11

Figure 2-2. Program Memory Mapping

PROGRAM
SPACE

FFFFh

A3FFh

8FFFh

7FFFh

3FFFh

8000h

4000h

0000h

A000h

1K x 16
SRAM

4K x 16
UTILITY ROM

16K x 16
FLASH

(PAGE 1)

16K x 16
FLASH

(PAGE 0)

� � Maxim�Integrated� 2-8

MAX31782 User’s Guide

Revision 0; 8/11

2.4.3.2�Frame�Pointer
The frame pointer (BP[OFFS]) is formed by the 16-bit unsigned addition of the 16-bit frame pointer base register (BP)
and the 8-bit frame pointer offset register (OFFS) . The method the MAX31782 uses to access data using the frame
pointer is similar to the data pointers . When increments or decrements are used, only the value of OFFS is incremented
or decremented . The base pointer (BP) remains unaffected by increments or decrements of the OFFS register, includ-
ing when the OFFS register rolls over from FFh to 00h or from 00h to FFh . Following are examples of how to use the
frame pointer .

	 move	BP,	#0100h	 	 ;	set	base	pointer	to	address	100h

	 move	OFFS,	#10h	 	 ;	set	the	offset	to	10h,

	 move	Acc,	@BP[OFFS]	 ;	read	data	from	location	0110h

	 move	@BP[OFFS],	Acc	 ;	write	data	to	location	0110h

	 move	Acc,	@BP[OFFS++]	 ;	increment	OFFS	after	read

	 move	Acc,	@BP[OFFS++]	 ;	decrement	OFFS	after	read

	 move	@BP[++OFFS],	Acc	 ;	increment	OFFS	before	write

	 move	@BP[--OFFS],	Acc	 ;	decrement	OFFS	before	write

2.4.4�Data�Memory�Mapping
The MAX31782’s pseudo-Von Neumann memory map allows the MMU to read data from each of the three memory seg-
ments (flash, SRAM, utility ROM) . The MMU can also write data directly to the SRAM memory segment . Data memory
can be written to the flash memory segment, but because writing to flash requires the use of the utility ROM routines,
this is not a direct access . The logical mapping of the three memory segments as data memory varies depending upon:

• from which memory segment instructions are currently being executed

• if data memory is being accessed in word or byte mode

In all cases, whichever memory segment is currently being used as program memory cannot be accessed as data
memory .

When the program is currently executing instructions from either the SRAM or utility ROM memory segments, the flash
memory is mapped to half the data memory space . If word access mode is selected, both pages (32KWords) can
be logically mapped to data memory space . If byte access mode is selected, only one page (32KB) can be logically
mapped to half of the data memory space . When operating in byte access mode, the selection of which flash page is
mapped into data memory space is determined by the code data access bit (CDA0):

The next three sections detail the mapping of the different memory segments as data memory depending upon from
which memory segment instructions are currently being executed .

CDA0 SELECTED�PAGE�IN�BYTE�MODE SELECTED�PAGE�IN�WORD�MODE

0 P0 P0 and P1

1 P1 P0 and P1

�Maxim�Integrated�� � 2-9

MAX31782 User’s Guide

Revision 0; 8/11

Figure 2-3. Memory Map When Executing from Flash Memory

2.4.4.1�Memory�Map�When�Executing�from�Flash�Memory
When executing from the flash memory:

• Read and write operations of SRAM memory are executed normally .

• The utility ROM can be read as data, starting at 8000h of the data space . The utility ROM cannot be written .

Figure 2-3 illustrates the mapping of the SRAM and utility ROM memory segments into data memory space when code
is executing from the flash memory segment .

PROGRAM
SPACE

DATA SPACE
(BYTE MODE)

DATA SPACE
(WORD MODE)

FFFFh FFFFh FFFFh

8FFFh

9FFFh

A3FFh

8FFFh

7FFFh 7FFFh

07FFh

3FFFh

EX
EC

UT
IN

G
FR

OM

8000h 8000h

7FFFh

03FFh

8000h

4000h

0000h 0000h 0000h

A000h

1K x 16
SRAM

4K x 16
UTILITY ROM

8K x 8
UTILITY ROM

4K x 16
UTILITY ROM

2K x 8
SRAM 1K x 16

SRAM

16K x 16
FLASH

(PAGE 1)

16K x 16
FLASH

(PAGE 0)

� �Maxim�Integrated� 2-10

MAX31782 User’s Guide

Revision 0; 8/11

2.4.4.2�Memory�Map�When�Executing�from�Utility�ROM
When executing from the utility ROM:

• Read and write operations of SRAM memory are executed normally .

• Reading of flash memory is executed normally . Writing to flash memory requires the use of the utility ROM routines .

• One page (byte access mode) or both pages (word access mode) of the flash memory can be accessed as data
with an offset of 8000h as determined by the CDA0 bit .

Figure 2-4 illustrates the mapping of the SRAM and flash memory segments into data memory space when code is
executing from the utility ROM memory segment .

Figure 2-4. Memory Map When Executing from Utility ROM

PROGRAM
SPACE

DATA SPACE
(WORD MODE)

DATA SPACE
(BYTE MODE, CDA0 = 0)

DATA SPACE
(BYTE MODE, CDA0 = 1)

FFFFh FFFFh FFFFh

A3FFh

8FFFh

7FFFh

3FFFh

EX
EC

UT
IN

G
FR

OM

8000h 8000h 8000h

FFFFh

8000h

03FFh

07FFh

4000h

0000h 0000h

07FFh

0000h 0000h

A000h

1K x 16
SRAM

32K x 8
LOWER HALF
(PAGE 0) OF

FLASH

32K x 8
UPPER HALF
(PAGE 1) OF

FLASH

32K x 16
FLASH

4K x 16
UTILITY ROM

16K x 16
FLASH

(PAGE 1)

2K x 8
SRAM

2K x 8
SRAM 1K x 16

SRAM

16K x 16
FLASH

(PAGE 0)

� Maxim�Integrated� 2-11

MAX31782 User’s Guide

Revision 0; 8/11

2.4.4.3�Memory�Map�When�Executing�from�SRAM
When executing from the SRAM:

The utility ROM can be read as data, starting at 8000h of the data space . The utility ROM cannot be written .

Reading of flash memory is executed normally . Writing to flash memory requires the use of the utility ROM routines .

One page (byte access mode) or both pages (word access mode) of the flash memory can be accessed as data with
an offset of 0000h . For byte access mode, the page of flash accessed is determined by the CDA0 bit .

Figure 2-5 illustrates the mapping of the flash and utility ROM memory segments into data memory space when code
is executing from the SRAM memory segment .

Figure 2-5. Memory Map When Executing from SRAM

PROGRAM
SPACE

DATA SPACE
(BYTE MODE, CDA0 = 0)

DATA SPACE
(BYTE MODE, CDA0 = 1)

DATA SPACE
(WORD MODE)

FFFFh FFFFh FFFFh FFFFh

8FFFh

9FFFh9FFFh

A3FFh

8FFFh

7FFFh

3FFFh

EX
EC

UT
IN

G
FR

OM

8000h

7FFFh

8000h

7FFFh

8000h

7FFFh

8000h

4000h

0000h 0000h 0000h 0000h

A000h

1K x 16
SRAM

4K x 16
UTILITY ROM

8K x 8
UTILITY ROM

8K x 8
UTILITY ROM

4K x 16
UTILITY ROM

32K x 8
LOWER HALF
(PAGE 0) OF

FLASH

32K x 8
UPPER HALF
(PAGE 1) OF

FLASH

32K x 16
FLASH

16K x 16
FLASH

(PAGE 1)

16K x 16
FLASH

(PAGE 0)

� �Maxim�Integrated� 2-12

MAX31782 User’s Guide

Revision 0; 8/11

2.5�Data�Alignment
To support merged program and data memory operation while maintaining efficient memory space usage, the data
memory must be able to support both byte and word mode accessing . Data is aligned in data memory as words, but
the effective data address is resolved to bytes . This data alignment allows program instruction fetching in words while
maintaining data accessibility at the byte level . It is important to realize that this accessibility requires strict word align-
ment . All executable or data words must align to an even address in byte mode . Care must be taken when updating a
code segment as misalignment of words likely results in loss of program execution control .

Memory is always read as a complete word, whether for program fetch or data access . The program decoder always
uses a full 16-bit word . The data access can utilize a word or an individual byte . Data memory is organized as two byte-
wide memory banks with common word address decode but two 8-bit data buses . In byte mode, data pointer hardware
reads out the full word containing the selected byte using the effective data word address pointer (the least significant
bit of the byte data pointer is not initially used) . Then, the least significant data pointer bit functions as the byte select
that is used to place the correct byte on the data bus . For write access, data pointer hardware addresses a particular
word using the effective data word address while the least significant bit selects the corresponding data bank for write .
The contents of the other byte are left unaffected .

2.6�Reset�Conditions
The MAX31782 has several possible sources of reset:

• Power-On/Brownout Reset

• Watchdog Timer Reset

• External Reset

• Internal System Reset

Once a reset condition has completed or been removed, code execution begins at the beginning of utility ROM, which
is address 8000h . The utility ROM code interrogates the I2C_SPE, JTAG_SPE, and PWL bits to determine if bootloading
is necessary . If bootloading is not required, execution jumps to the user code reset vector, which is at flash memory
address 0000h .

The RST pin is an output as well as an input . If a reset condition is generated by one of the MAX31782’s internal reset
sources (brownout, watchdog timer, or internal reset), an output reset pulse is generated on the RST pin while the
MAX31782 remains in reset .

2.6.1�Power-On/Brownout�Reset
The MAX31782 provides a power-on reset (POR) circuit to ensure proper initialization of internal device states and ana-
log circuits . The POR voltage threshold range is between approximately 1 .1V and 1 .7V . When VDD is below the POR
level, the state of all the MAX31782 pins, including RST, is indeterminate .

The MAX31782 also includes brownout detection capability . This is an on-chip precision reference and comparator that
monitors the supply voltage, VDD, to ensure that it is within acceptable limits . If VDD is below the brownout level (VBO),
the power monitor generates a reset . This can occur when:

• The MAX31782 is being powered up and VDD is above the POR level but still less than VBO .

• VDD drops from an acceptable level to less than VBO .

Once VDD exceeds VBO, the MAX31782 exits the reset condition and the internal oscillator starts up . After approxi-
mately 1000 clock cycles (tSU:MOSC) the MAX31782 performs the following tasks .

• All registers and circuits enter their reset state .

• The POR flag in the watchdog control register (WDCN) is set to indicate the source of the reset .

• The MAX31782 begins normal operation (CPU state) .

• Code execution begins at utility ROM location 8000h .

The transition between POR, brownout, and normal operation is detailed in Figure 2-6 . Note: If VDD is below VBO, there
is a chance that the SRAM was corrupted . If the POR flag in WDCN is set, all data in SRAM should be reinitialized .

� � Maxim�Integrated� 2-13

MAX31782 User’s Guide

Revision 0; 8/11

2.6.2�Watchdog�Timer�Reset
The watchdog timer is a programmable hardware timer that can be used to reset the processor in case a software
lockup or other unrecoverable error occurs . Once the watchdog is enabled, software must reset the watchdog timer
periodically . If the processor does not reset the watchdog timer before it elapses, the watchdog can initiate a reset .

If the watchdog resets the processor, the MAX31782 remains in reset and holds the RST pin low for 12 clock cycles .
When a reset occurs due to a watchdog timeout, the watchdog timer reset flag (WTRF) in the WDCN register is set to
indicate the source of the reset .

2.6.3�External�Reset
During normal operation, the MAX31782 is placed into external reset when the RST pin is held at logic 0 for at least four
clock cycles . Once the MAX31782 enters reset mode, it remains in reset as long as the RST pin is held at logic 0 . After
the RST pin returns to logic 1, the processor exits reset within 12 clock cycles .

An external reset pulse on the RST pin can also bring the MAX31782 out of its low-power stop mode . When this occurs,
the MAX31782 resets and returns to normal CPU mode operation within 10 clock cycles .

2.6.4�Internal�System�Resets
There are two possible sources of internal system resets . An internal reset holds the MAX31782 in reset mode for 12
clock cycles .

1) When data BBh is written to the special I2C slave address 34h .

2) When in-system programming is complete and the ROD bit is set to 1 .

Figure 2-6. MAX31782 State Diagram

POR

SYSTEM CLOCK
STARTUP DELAY

tSU:MOSC

PORT6 GPIO INT, I2C
START INT, SVM INT

OR EXT RESET

CKCN.STOP = 1

VDD > VBO

VDD < VBO

VDD < VBO

VDD < VBO

BROWNOUT STATE
CPU DISABLED
ANALOG ACTIVE

CPU MODE
DIGITAL CORE ON

ANALOG ON
CODE IS EXECUTING

STOP MODE
DIGITAL CORE OFF

ANALOG ON
SVM MONITOR DEPENDS

ON SVMEN AND SVMSTOP

� �Maxim�Integrated� 2-14

MAX31782 User’s Guide

Revision 0; 8/11

2.7�Clock�Generation
The MAX31782 generates its 4MHz instruction clock using an internal oscillator . This oscillator starts up when VDD
exceeds the brownout voltage level, VBO . There is a delay of approximately 1000 clock cycles (tSU:MOSC) between
when the oscillator starts and when clocking of the MAX31782 begins . This delay ensures that the clock is stable prior
to beginning normal operation .

2.8�Power�Modes
The MAX31782 has two modes of operation . These two modes of operation are detailed in the state diagram as shown
in Figure 2-6 .

1) Normal CPU mode

2) Stop mode

The MAX31782 enters stop mode when the STOP bit in the system clock control register (CKCN) is set . Upon entering
stop mode, the digital core is no longer clocked, thus making the core inactive . In stop mode, the ADC is also disabled
and the Supply Voltage Monitor (SVM) can be disabled . The internal oscillator, brownout detection, and regulators
(REG18 and REG25 pins) remain active during stop mode . Table 2-2 details the state of the MAX31782’s analog and
digital blocks during the different modes of operation .

The MAX31782 exits stop mode when any of the following interrupt conditions occurs:

• GPIO interrupt from Port 6

• I2C START interrupt

• SVM interrupt

• External reset

The interrupt sources listed must be enabled prior to entering stop mode if they are going to be used to bring the
MAX31782 out of stop mode . After receiving one of these interrupts, the MAX31782 exits stop mode and returns to CPU
mode within 10 system clock cycles . If an interrupt causes the system to come out of stop mode, the program execution
starts from the point where stop mode was asserted . However, if an external reset is used to come out of stop mode,
the program execution begins from utility ROM location 8000h .

Table�2-2.�State�of�Circuits�During�Different�Modes

CKCN.STOP SVM.SVMEN SVM.SVMSTOP
POWER�

MODE
CPU

REGULATORS INTERNAL�

OSCILLATOR

BROWNOUT

DETECTION

SVM

MONITOR
ADC

1.8V 2.5V

0 0 X
CPU

Mode
On On On On On Off On/Off

0 1 X
CPU

Mode
On On On On On On On/Off

1 0 X
Stop

Mode
Off On On On On Off Off

1 1 0
Stop

Mode
Off On On On On Off Off

1 1 1
Stop

Mode
Off On On On On On Off

� � Maxim�Integrated�� � 3-1

MAX31782 User’s Guide

Revision 0; 8/11

SECTION 3: SYSTEM REGISTER DESCRIPTIONS

3 .1 System Register Bit Descriptions . .3-4

3 .1 .1 Accumulator Pointer Register (AP, 8h[0h]) .3-4

3 .1 .2 Accumulator Pointer Control Register (APC, 8h[1h]) . .3-4

3 .1 .3 Processor Status Flags Register (PSF, 8h[4h]) .3-5

3 .1 .4 Interrupt and Control Register (IC, 8h[5h]) .3-5

3 .1 .5 Interrupt Mask Register (IMR, 8h[6h]) .3-6

3 .1 .6 System Control Register (SC, 8h[8h]) .3-6

3 .1 .7 Interrupt Identification Register (IIR, 8h[Bh]) .3-7

3 .1 .8 System Clock Control Register (CKCN, 8h[Eh]) .3-7

3 .1 .9 Watchdog Control Register (WDCN, 8h[Fh]) . .3-8

3 .1 .10 Accumulator n Register (A[n], 9h[nh]) . .3-9

3 .1 .11 Prefix Register (PFX[n], Bh[n]) .3-9

3 .1 .12 Instruction Pointer Register (IP, Ch[0h]) .3-9

3 .1 .13 Stack Pointer Register (SP, Dh[1h]) . .3-10

3 .1 .14 Interrupt Vector Register (IV, Dh[2h]) .3-10

3 .1 .15 Loop Counter 0 Register (LC[0], Dh[6h]) .3-10

3 .1 .16 Loop Counter 1 Register (LC[1], Dh[7h]) .3-10

3 .1 .17 Frame Pointer Offset Register (OFFS, Eh[3h]) . .3-10

3 .1 .18 Data Pointer Control Register (DPC, Eh[4h]) .3-11

3 .1 .19 General Register (GR, Eh[5h]) .3-11

3 .1 .20 General Register Low Byte (GRL, Eh[6h]) .3-11

3 .1 .21 Frame Pointer Base Register (BP, Eh[7h]) . .3-12

3 .1 .22 General Register Byte-Swapped (GRS, Eh[8h]) .3-12

3 .1 .23 General Register High Byte (GRH, Eh[9h]) .3-12

3 .1 .24 General Register Sign Extended Low Byte (GRXL, Eh[Ah]) .3-12

3 .1 .25 Frame Pointer Register (FP, Eh[Bh]) .3-12

3 .1 .26 Data Pointer 0 Register (DP[0], Fh[3h]) .3-12

3 .1 .27 Data Pointer 1 Register (DP[1], Fh[7h]) .3-13

LIST OF TABLES

Table 3-1 . System Register Map .3-2

Table 3-2 . System Register Bit Functions .3-3

This section contains the following information:

� � Maxim�Integrated 3-2

MAX31782 User’s Guide

Revision 0; 8/11

SECTION 3: SYSTEM REGISTER DESCRIPTIONS
Most MAX31782 functions are controlled by sets of registers . These registers provide a working space for memory oper-
ations as well as configuring and addressing peripheral registers on the device . Registers are divided into two major
types: system registers and peripheral registers . The common register set, also known as the system registers, includes
ALU access and control registers, accumulator registers, data pointers, interrupt vectors and control, and stack pointer .
The peripheral registers define additional functionality and the functionality is broken up into discrete modules .

This section describes the MAX31782’s system registers . Table 3-1 shows the MAX31782 system register map .
Table 3-2 explains system register bit functions . This is followed by a detailed bit description .

Table�3-1.�System�Register�Map

REGISTER�
INDEX

REGISTER�MODULE

AP�(8h) A�(9h) PFX�(Bh) IP�(Ch) SP�(Dh) DPC�(Eh) DP�(Fh)

00h AP A[0] PFX[0] IP — — —

01h APC A[1] PFX[1] — SP — —

02h — A[2] PFX[2] — IV — —

03h — A[3] PFX[3] — — OFFS DP[0]

04h PSF A[4] PFX[4] — — DPC —

05h IC A[5] PFX[5] — — GR —

06h IMR A[6] PFX[6] — LC[0] GRL —

07h — A[7] PFX[7] — LC[1] BP DP[1]

08h SC A[8] — — — GRS —

09h — A[9] — — — GRH —

0Ah — A[10] — — — GRXL —

0Bh IIR A[11] — — — FP —

0Ch — A[12] — — — — —

0Dh — A[13] — — — — —

0Eh CKCN A[14] — — — — —

0Fh WDCN A[15] — — — — —

� Maxim�Integrated� 3-3

MAX31782 User’s Guide

Revision 0; 8/11

Table�3-2.�System�Register�Bit�Functions

REGISTER
BIT

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AP — — — — AP (4 bits)

APC CLR IDS — — — MOD2 MOD1 MOD0

PSF Z S — GPF1 GPF0 OV C E

IC — — — — — — INS IGE

IMR IMS — IM5 IM4 IM3 IM2 IM1 IM0

SC TAP — — CDA0 — ROD PWL —

IIR IIS — II5 II4 II3 II2 II1 II0

CKCN — — — STOP — — — —

WDCN POR EWDI WD1 WD0 WDIF WTRF EWT RWT

A[n] (n = 15:0) A[n] (16 bits)

PFX[n] (n = 7:0) PFX[n] (16 bits)

IP IP (16 bits)

SP — — — — — — — — — — — — SP (4 bits)

IV IV (16 bits)

LC[0] LC[0] (16 bits)

LC[1] LC[1] (16 bits)

OFFS OFFS (8 bits)

DPC — — — — — — — — — — — WBS2 WBS1 WBS0 SDPS1SDPS0

GR GR (16 bits)

GRL GRL (8 bits)

BP BP (16 bits)

GRS GRS (16 bits) = (GRL:GRH)

GRH GRH (8 bits)

GRXL GRXL (16 bits) = (GRL .7, 8 bits): (GRL, 8 bits)

FP FP = BP[OFFS] (16 bits)

DP[0] DP[0] (16 bits)

DP[1] DP[1] (16 bits)

� �Maxim�Integrated� 3-4

MAX31782 User’s Guide

Revision 0; 8/11

3.1�System�Register�Bit�Descriptions

3.1.1�Accumulator�Pointer�Register�(AP,�8h[0h])
Initialization: This register is cleared to 00h on all forms of reset .

Access: Unrestricted direct read/write access .

3.1.2�Accumulator�Pointer�Control�Register�(APC,�8h[1h])
Initialization: This register is cleared to 00h on all forms of reset .

Access: Unrestricted direct read/write access .

BIT FUNCTION

AP .[3:0]

Active Accumulator Select . These bits select which of the 16 accumulator registers are used for arithmetic and
logical operations . If the APC register has been set to perform automatic increment/decrement of the active
accumulator, this setting is automatically changed after each arithmetic or logical operation . If a ‘MOVE AP,
Acc’ instruction is executed, any enabled AP inc/dec/modulo control takes precedence over the transfer of Acc
data into AP .

AP .[7:4] Reserved . All reads return 0 .

BIT FUNCTION

APC .[2:0]
(MOD[2:0])

Accumulator Pointer Auto Increment/Decrement Modulus . If these bits are set to a nonzero value, the accumula-
tor pointer (AP[3:0]) is automatically incremented or decremented following each arithmetic or logical operation .
The mode for the auto increment/decrement is determined as follows:

MOD[2:0] AUTO INCREMENT/DECREMENT MODE

000 No auto increment/decrement (default)

001 Increment/decrement AP[0] modulo 2

010 Increment/decrement AP[1:0] modulo 4

011 Increment/decrement AP[2:0] modulo 8

100 Increment/decrement AP modulo 16

101 to 111 Reserved (modulo 16 when set)

APC .[5:3] Reserved . All reads return 0 .

APC .6 (IDS)

Increment/Decrement Select . If this bit is set to 0, the accumulator pointer AP is incremented following each
arithmetic or logical operation according to MOD[2:0] . If this bit is set to 1, the accumulator pointer AP is decre-
mented following each arithmetic or logical operation according to MOD[2:0] . If MOD[2:0] is set to 000, the set-
ting of this bit is ignored .

APC .7 (CLR)
AP Clear . Writing this bit to 1 clears the accumulator pointer AP to 0 . Once set, this bit is automatically reset to 0
by hardware . If a ‘MOVE APC, Acc’ instruction is executed requesting that AP be set to 0 (i .e ., CLR = 1), the AP
clear function overrides any enabled inc/dec/modulo control . All reads from this bit return 0 .

� � Maxim�Integrated� 3-5

MAX31782 User’s Guide

Revision 0; 8/11

3.1.3�Processor�Status�Flags�Register�(PSF,�8h[4h])
Initialization: This register is cleared to 80h on all forms of reset .

Access: Bit 7 (Z), bit 6 (S), and bit 2 (OV) are read-only . Bits 4 and 3 (GPF1, GPF0), bit 1 (C), and bit 0 (E) are unre-
stricted read/write .

3.1.4�Interrupt�and�Control�Register�(IC,�8h[5h])
Initialization: This register is cleared to 00h on all forms of reset .

Access: Unrestricted direct read/write access .

BIT FUNCTION

PSF .0 (E)
Equals Flag . This bit flag is set to 1 whenever a compare operation (CMP) returns an equal result . If a CMP
operation returns not equal, this bit is cleared .

PSF .1 (C)
Carry Flag . This bit flag is set to 1 whenever an add or subtract operation (ADD, ADDC, SUB, SUBB) returns a
carry or borrow . This bit flag is cleared to 0 whenever an add or subtract operation does not return a carry or
borrow . Many other instructions potentially affect the carry bit .

PSF .2 (OV)
Overflow Flag . This flag is set to 1 if there is a carry out of bit 14 but not out of bit 15, or a carry out of bit 15 but
not out of bit 14 from the last arithmetic operation, otherwise, the OV flag remains as 0 . OV indicates a negative
number resulted as the sum of two positive operands, or a positive sum resulted from two negative operands .

PSF .3 (GPF0) General-Purpose Flag 0

PSF .4 (GPF1) General-Purpose Flag 1 . These general-purpose flag bits are provided for user software control .

PSF .5 Reserved . All reads return 0 .

PSF .6 (S) Sign Flag . This bit flag mirrors the current value of the high bit of the active accumulator (Acc .15) .

PSF .7 (Z)
Zero Flag . The value of this bit flag equals 1 whenever the active accumulator is equal to zero, and it equals 0
otherwise .

BIT FUNCTION

IC .0 (IGE)
Interrupt Global Enable . This bit enables the interrupt handler if set to 1 . No interrupt to the CPU is allowed if
this bit is cleared to 0 .

IC .1 (INS)

Interrupt In Service . The INS is set by the interrupt handler automatically when an interrupt is acknowledged .
No further interrupts occur as long as the INS bit remains set . The interrupt service routine can clear the INS bit
to allow interrupt nesting . Otherwise, the INS bit is cleared automatically by the interrupt handler upon execu-
tion of an RETI/POPI instruction .

IC .[7:2] Reserved . All reads return 0 .

� � 3-6

MAX31782 User’s Guide

Revision 0; 8/11

3.1.5�Interrupt�Mask�Register�(IMR,�8h[6h])
Initialization: This register is cleared to 00h on all forms of reset .

Access: Unrestricted read/write access .

3.1.6�System�Control�Register�(SC,�8h[8h])
Initialization: This register is reset to 100000s0b on all reset . Bit 1 (PWL) is set to 1 on a power-on reset only .

Access: Unrestricted read/write access .

The first six bits in this register are interrupt mask bits for modules 0 to 5, one bit per module . The eighth bit, IMS, serves as a
mask for any system module interrupt sources . Setting a mask bit allows the enabled interrupt sources for the associated module
or system (for the case of IMS) to generate interrupt requests . Clearing the mask bit effectively disables all interrupt sources asso-
ciated with that specific module or all system interrupt sources (for the case of IMS) . The interrupt mask register is intended to
facilitate user-definable interrupt prioritization .

BIT FUNCTION

IMR .0 (IM0) Interrupt Mask for Register Module 0

IMR .1 (IM1) Interrupt Mask for Register Module 1

IMR .2 (IM2) Interrupt Mask for Register Module 2

IMR .3 (IM3) Interrupt Mask for Register Module 3

IMR .4 (IM4) Interrupt Mask for Register Module 4

IMR .5 (IM5) Interrupt Mask for Register Module 5

IMR .6 Reserved . Reads return 0 .

IMR .7 (IMS) Interrupt Mask for System Modules

BIT FUNCTION

SC .0 Reserved . All reads return 0 .

SC .1 (PWL)

Password Lock . This bit defaults to 1 on a power-on reset . When this bit is 1, it requires a 32-byte password to
be matched with the password in the program space before allowing access to the ROM loader’s utilities for
read/write of program memory and debug functions . Clearing this bit to 0 disables the password protection to
the ROM loader .

SC .2 (ROD)

ROM Operation Done . This bit is used to signify completion of a ROM operation sequence to the control units .
This allows the debug engine to determine the status of a ROM sequence . Setting this bit to logic 1 causes an
internal system reset if the JTAG_SPE bit is also set . Setting the ROD bit clears the JTAG_SPE bit if it is set and
the ROD bit is automatically cleared by hardware once the control unit acknowledges the done indication .

SC .3 Reserved . All reads return 0 .

SC .4 (CDA0)

Code Data Access Bit 0 . The CDA bit is used to logically map physical program memory page to the data
space for read/write access:

CDA0 BYTE MODE ACTIVE PAGE WORD MODE ACTIVE PAGE

0 P0 P0 and P1

1 P1 P0 and P1

The logical addresses depend on which memory segment is executing . Note that CDA1 (normally at bit posi-
tion SC .5) is not implemented since the maximum flash memory size is 64KB or 32KWords .

SC .[6:5] Reserved . All reads return 0 .

SC .7 (TAP)
Test Access (JTAG) Port Enable . This bit controls whether the test access port special-function pins are
enabled . The TAP defaults to being enabled . Clearing this bit to 0 disables the TAP special-function pins on the
JTAG pins .

� �Maxim�Integrated� 3-7

MAX31782 User’s Guide

Revision 0; 8/11

3.1.7�Interrupt�Identification�Register�(IIR,�8h[Bh])
Initialization: This register is cleared to 00h on all forms of reset .

Access: Read-only .

3.1.8�System�Clock�Control�Register�(CKCN,�8h[Eh])
Initialization: This register is cleared to 10h on all forms of reset .

Access: Unrestricted read/write access .

The first six bits in this register indicate interrupts pending in modules 0 to 5, one bit per module . The eighth bit, IIS, indicates a
pending system interrupt, such as from the watchdog timer . The interrupt pending flags are set only for enabled interrupt sources
waiting for service . The interrupt pending flag is cleared when the pending interrupt sources within that module are disabled or
when the interrupt flags are cleared by software .

BIT FUNCTION

IIR .0 (II0) Interrupt Identifier Flag for Register Module 0

IIR .1 (II1) Interrupt Identifier Flag for Register Module 1

IIR .2 (II2) Interrupt Identifier Flag for Register Module 2

IIR .3 (II3) Interrupt Identifier Flag for Register Module 3

IIR .4 (II4) Interrupt Identifier Flag for Register Module 4

IIR .5 (II5) Interrupt Identifier Flag for Register Module 5

IIR .6 Reserved . Reads return 0 .

IIR .7 (IIS) Interrupt Identifier Flag for System Modules

BIT FUNCTION

CKCN .[3:0] Reserved . All reads return 0 .

CKCN .4 (STOP)
Stop Mode Select . Setting this bit to 1 stops program execution and commences low-power operation . This
bit is cleared by a reset or any of the enabled external interrupts . Setting and resetting the STOP bit does not
change the system clock source and its divide ratio .

CKCN .[6:5] Reserved . All reads return 0 .

CKCN .7 Reserved . All reads return 1 .

� � � � 3-8

MAX31782 User’s Guide

Revision 0; 8/11

3.1.9�Watchdog�Control�Register�(WDCN,�8h[Fh])
Initialization: Bits 5, 4, 3, and 0 are cleared to 0 on all forms of reset; for others, see individual bit descriptions .

Access: Unrestricted direct read/write access .

BIT FUNCTION

WDCN .0
(RWT)

Reset Watchdog Timer . Setting this bit to 1 resets the watchdog timer count . If watchdog interrupt and/or reset
modes are enabled, the software must set this bit to 1 before the watchdog timer elapses to prevent an interrupt
or reset from occurring . This bit always returns 0 when read .

WDCN .1
(EWT)

Enable Watchdog Timer Reset . If this bit is set to 1 when the watchdog timer elapses, the watchdog resets the
processor 512 system clock cycles later unless action is taken to disable the reset event . Clearing this bit to 0
prevents a watchdog reset from occurring but does not stop the watchdog timer or prevent watchdog interrupts
from occurring if EWDI = 1 . If EWT = 0 and EWDI = 0, the watchdog timer is stopped . If the watchdog timer
is stopped (EWT = 0 and EWDI = 0), setting the EWT bit resets the watchdog interval and reset counter, and
enables the watchdog timer . This bit is cleared on power-on reset and is unaffected by other forms of reset .

WDCN .2
(WTRF)

Watchdog Timer Reset Flag . This bit is set to 1 when the watchdog resets the processor . Software can check this
bit following a reset to determine if the watchdog was the source of the reset . Setting this bit to 1 in software does
not cause a watchdog reset . This bit is cleared by power-on reset only and is unaffected by other forms of reset .
It should also be cleared by software following any reset so that the source of the next reset can be correctly
determined by software . This bit is only set to 1 when a watchdog reset actually occurs, so if EWT is cleared to 0
when the watchdog timer elapses, this bit is not set .

WDCN .3
(WDIF)

Watchdog Interrupt Flag . This bit is set to 1 when the watchdog timer interval has elapsed or can be set to 1 by
user software . When WDIF = 1, an interrupt request occurs if the watchdog interrupt has been enabled (EWDI =
1) and not otherwise masked, or prevented by an interrupt already in service (i .e ., IGE = 1, IMS = 1, and INS = 0
must be true for the interrupt to occur) . This bit should be cleared by software before exiting the interrupt service
routine to avoid repeated interrupts . Furthermore, if the watchdog reset has been enabled (EWT = 1), a reset is
scheduled to occur 512 system clock cycles following setting of the WDIF bit .

WDCN .4
(WD0);

WDCN .5
(WD1)

Watchdog Timer Mode Select Bit 0; Watchdog Timer Mode Select Bit 1 . These bits determine the watchdog inter-
val or the length of time between resetting of watchdog timer and the watchdog generated interrupt in terms of
system clocks . Modifying the watchdog interval through the WD[1:0] bits automatically resets the watchdog timer
unless the 512 system clock reset counter is already in progress, in which case, changing the WD[1:0] bits does
not affect the watchdog timer or reset counter .

WD1 WD0 CLOCKS UNTIL INTERRUPT CLOCKS UNTIL RESET

0 0 212 212 + 512

0 1 215 215 + 512

1 0 218 218 + 512

1 1 221 221 + 512

WDCN .6
(EWDI)

Watchdog Interrupt Enable . If this bit is set to 1, an interrupt request can be generated when the WDIF bit is set
to 1 by any means . If this bit is cleared to 0, no interrupt occurs when WDIF is set to 1; however, it does not stop
the watchdog timer or prevent watchdog resets from occurring if EWT = 1 . If EWT = 0 and EWDI = 0, the watch-
dog timer is stopped . If the watchdog timer is stopped (EWT = 0 and EWDI = 0), setting the EWDI bit resets the
watchdog interval and reset counter, and enables the watchdog timer . This bit is cleared to 0 by power-on reset
and is unaffected by other forms of reset .

WDCN .7
(POR)

Power-On-Reset Flag . This bit is set to 1 whenever a power-on/brownout reset occurs . It is unaffected by other
forms of reset . This bit can be checked by software following a reset to determine if a power-on/brownout reset
occurred . It should always be cleared by software following a reset to ensure that the sources of following resets
can be determined correctly .

� � Maxim�Integrated�� � 3-9

MAX31782 User’s Guide

Revision 0; 8/11

3.1.10�Accumulator�n�Register�(A[n],�9h[nh])
Initialization: This register is cleared to 0000h on all forms of reset .

Access: Unrestricted direct read/write access .

3.1.11�Prefix�Register�(PFX[n],�Bh[n])
Initialization: This register is cleared to 0000h on all forms of reset .

Access: Unrestricted direct read/write access .

3.1.12�Instruction�Pointer�Register�(IP,�Ch[0h])
Initialization: This register is cleared to 8000h on all forms of reset .

Access: Unrestricted direct read/write access .

BIT FUNCTION

A[n] .[15:0]
This register acts as the accumulator for all ALU arithmetic and logical operations when selected by the
accumulator pointer (AP) . It can also be used as a general-purpose working register .

BIT FUNCTION

PFX[n] .[15:0]

The Prefix register provides a means of supplying an additional 8 bits of high-order data for use by the
succeeding instruction as well as providing additional indexing capabilities . This register only holds any
data written to it for one execution cycle, after which it reverts to 0000h . Although this is a 16-bit register,
only the lower 8 bits are actually used for prefixing purposes by the next instruction . Writing to or reading
from any index in the prefix module selects the same 16-bit register . However, when the PFX register is
written, the index n used for the PFX[n] write also determines the high-order bits for the register source
and destination specified in the following instruction .

WRITE TO
SOURCE, DESTINATION INDEX SELECTION

SOURCE REGISTER RANGE DESTINATION REGISTER RANGE

PFX[0] 0h to Fh 0h to 7h

PFX[1] 10h to 1Fh 0h to 7h

PFX[2] 0h to Fh 8h to Fh

PFX[3] 10h to 1Fh 8h to Fh

PFX[4] 0h to Fh 10h to 17h

PFX[5] 10h to 1Fh 10h to 17h

PFX[6] 0h to Fh 18h to 1Fh

PFX[7] 10h to 1Fh 18h to 1Fh

The index selection reverts to 0 (default mode allowing selection of registers 0h to 7h for destinations)
after one cycle in the same manner as the contents of the PFX register .

BIT FUNCTION

IP .[15:0]
This register contains the address of the next instruction to be executed and is automatically incremented
by 1 after each program fetch . Writing an address value to this register caused program flow to jump to
that address . Reading from this register does not affect program flow .

� � Maxim�Integrated�� �3-10

MAX31782 User’s Guide

Revision 0; 8/11

3.1.13�Stack�Pointer�Register�(SP,�Dh[1h])
Initialization: This register is cleared to 000Fh on all forms of reset .

Access: Unrestricted direct read/write access .

3.1.14�Interrupt�Vector�Register�(IV,�Dh[2h])
Initialization: This register is cleared to 0000h on all forms of reset .

Access: Unrestricted direct read/write access .

3.1.15�Loop�Counter�0�Register�(LC[0],�Dh[6h])
Initialization: This register is cleared to 0000h on all forms of reset .

Access: Unrestricted direct read/write access .

3.1.16�Loop�Counter�1�Register�(LC[1],�Dh[7h])
Initialization: This register is cleared to 0000h on all forms of reset .

Access: Unrestricted direct read/write access .

3.1.17�Frame�Pointer�Offset�Register�(OFFS,�Eh[3h])
Initialization: This register is cleared to 00h on all forms of reset .

Access: Unrestricted direct read/write access .

BIT FUNCTION

SP .[3:0]
These four bits indicate the current top of the hardware stack, from 0h to Fh . This pointer is incremented
after a value is pushed on the stack and decremented before a value is popped from the stack .

SP .[15:4] Reserved . All reads return 0 .

BIT FUNCTION

IV .[15:0]
This register contains the address of the interrupt service routine . The interrupt handler generates a CALL
to this address whenever an interrupt is acknowledged .

BIT FUNCTION

LC[0] .[15:0]
This register is used as the loop counter for the DJNZ LC[0], src operation . This operation decrements
LC[0] by one and then jumps to the address specified in the instruction by src .

BIT FUNCTION

LC[1] .[15:0]
This register is used as the loop counter for the DJNZ LC[1], src operation . This operation decrements
LC[1] by one and then jumps to the address specified in the instruction by src .

BIT FUNCTION

OFFS .[7:0]

This 8-bit register provides the Frame Pointer (FP) offset from the base pointer (BP) . The Frame Pointer is
formed by unsigned addition of Frame Pointer Base register (BP) and Frame Pointer Offset register (OFFS) .
The contents of this register can be postincremented or postdecremented when using the Frame Pointer
for read operations and can be preincremented or predecremented when using the Frame Pointer for write
operations . A carry out or borrow resulting from an increment/decrement operation has no affect on the
Frame Pointer Base register (BP) .

� Maxim�Integrated� 3-11

MAX31782 User’s Guide

Revision 0; 8/11

3.1.18�Data�Pointer�Control�Register�(DPC,�Eh[4h])
Initialization: This register is cleared to 001Ch on all forms of reset .

Access: Unrestricted direct read/write access .

3.1.19�General�Register�(GR,�Eh[5h])
Initialization: This register is cleared to 0000h on all forms of reset .

Access: Unrestricted direct read/write access .

3.1.20�General�Register�Low�Byte�(GRL,�Eh[6h])
Initialization: This register is cleared to 00h on all forms of reset .

Access: Unrestricted direct read/write access .

BIT FUNCTION

DPC .[1:0]
(SDPS[1:0])

Source Data Pointer Select Bits 1:0 . These bits select one of the three data pointers as the active source point-
er for the load operation . A new data pointer must be selected before being used to read data memory:

SDPS1 SDPS0 SOURCE POINTER SELECTION

0 0 DP[0]

0 1 DP[1]

1 0 FP (BP[OFFS])

1 1 Reserved (select FP if set)

These bits default to 00b but do not activate DP[0] as an active source pointer until the SDPS bits are explicitly
cleared to 00b or the DP[0] register is written by an instruction . Also, modifying the register contents of a data/
frame pointer register (DP[0], DP[1], BP, or OFFS) changes the setting of the SDPS bits to reflect the active
source pointer selection .

DPC .2 (WBS0)
Word/Byte Select 0 . This bit selects access mode for DP[0] . When WBS0 is set to logic 1, the DP[0] is oper-
ated in word mode for data memory access; when WBS0 is cleared to logic 0, DP[0] is operated in byte mode
for data memory access .

DPC .3 (WBS1)
Word/Byte Select 1 . This bit selects access mode for DP[1] . When WBS1 is set to logic 1, the DP[1] is oper-
ated in word mode for data memory access; when WBS1 is cleared to logic 0, DP[1] is operated in byte mode
for data memory access .

DPC .4 (WBS2)
Word/Byte Select 2 . This bit selects access mode for BP[OFFS] . When WBS2 is set to logic 1, the BP[OFFS]
is operated in word mode for data memory access; when WBS2 is cleared to logic 0, BP[OFFS] is operated in
byte mode for data memory access .

DPC .[15:5] Reserved . Read returns 0 .

BIT FUNCTION

GR .[15:0]
This register is intended primarily for supporting byte operations on 16-bit data . The 16-bit register is byte-
readable, byte-writable through the corresponding GRL and GRH 8-bit registers and byte-swappable through
the GRS 16-bit register .

BIT FUNCTION

GRL .[7:0]
This register reflects the low byte of the GR register and is intended primarily for supporting byte operations
on 16-bit data . Any data written to the GRL register is also stored in the low byte of the GR register .

� �Maxim�Integrated 3-12

MAX31782 User’s Guide

Revision 0; 8/11

3.1.21�Frame�Pointer�Base�Register�(BP,�Eh[7h])
Initialization: This register is cleared to 0000h on all forms of reset .

Access: Unrestricted direct read/write access .

3.1.22�General�Register�Byte-Swapped�(GRS,�Eh[8h])
Initialization: This register is cleared to 0000h on all forms of reset .

Access: Unrestricted read-only access .

3.1.23�General�Register�High�Byte�(GRH,�Eh[9h])
Initialization: This register is cleared to 00h on all forms of reset .

Access: Unrestricted direct read/write access .

3.1.24�General�Register�Sign�Extended�Low�Byte�(GRXL,�Eh[Ah])
Initialization: This register is cleared to 0000h on all forms of reset .

Access: Unrestricted direct read-only access .

3.1.25�Frame�Pointer�Register�(FP,�Eh[Bh])
Initialization: This register is cleared to 0000h on all forms of reset .

Access: Unrestricted direct read-only access .

3.1.26�Data�Pointer�0�Register�(DP[0],�Fh[3h])
Initialization: This register is cleared to 0000h on all forms of reset .

Access: Unrestricted direct read/write access .

BIT FUNCTION

BP .[15:0]
This register serves as the base pointer for the frame pointer (FP) . The frame pointer is formed by unsigned addi-
tion of frame pointer base register (BP) and frame pointer offset register (OFFS) . The content of this base pointer
register is not affected by increment/decrement operations performed on the offset (OFFS) register .

BIT FUNCTION

GRS .[15:0]
This register is intended primarily for supporting byte operations on 16-bit data . This 16-bit read-only regis-
ter returns the byte-swapped value for the data contained in the GR register .

BIT FUNCTION

GRH .[7:0]
This register reflects the high byte of the GR register and is intended primarily for supporting byte operations
on 16-bit data . Any data written to the GRH register is also stored in the high byte of the GR register .

BIT FUNCTION

GRXL .[15:0] This register provides the sign extended low byte of GR as a 16-bit source .

BIT FUNCTION

FP .[15:0] This register provides the current value of the frame pointer (BP[OFFS]) .

BIT FUNCTION

DP[0] .[15:0]
This register is used as a pointer to access data memory . DP[0] can be automatically incremented or dec-
remented following each read operation, or can be automatically incremented or decremented before each
write operation .

� � Maxim�Integrated� 3-13

MAX31782 User’s Guide

Revision 0; 8/11

3.1.27�Data�Pointer�1�Register�(DP[1],�Fh[7h])
Initialization: This register is cleared to 0000h on all forms of reset .

Access: Unrestricted direct read/write access .

BIT FUNCTION

DP[1] .[15:0]
This register is used as a pointer to access data memory . DP[1] can be automatically incremented or dec-
remented following each read operation, or can be automatically incremented or decremented before each
write operation .

� � Maxim�Integrated�� � 4-1

MAX31782 User’s Guide

Revision 0; 8/11

The MAX31782 has six peripheral register modules, Modules 0 through 5 . This section describes the MAX31782’s
peripheral registers . Table 4-1 shows the MAX31782 peripheral register map . Table 4-2 explains peripheral register bit
functions . Detailed peripheral register bit descriptions and default values appear in the corresponding function block
description section .

Table�4-1.�Peripheral�Register�Map

SECTION 4: PERIPHERAL REGISTER MODULES

INDEX M0 M1 M2 M3 M4 M5

00h PO2 I2CBUF_M I2CBUF_S PWMC0 PWMC2 MCNT

01h PO1 I2CST_M I2CST_S PWMR0 PWMR2 MA

02h I2CIE_M I2CIE_S PWMC1 PWMC3 MB

03h MIIR0 PO6 MIIR2 PWMR1 PWMR3 MC2

04h MIIR1 SMBUS MC1

05h TACHR0 TACHR2 MC0

06h TB0C EIF6 ADST MC1R

07h TB0R EIE6 ADADDR TACHR1 TACHR3 MC0R

08h PI2 PI6 ADCN PWMV0 PWMV2 PWMV4

09h PI1 SVM ADDATA PWMCN0 PWMCN2 PWMCN4

0Ah PWMV1 PWMV3 PWMC4

0Bh TB0V PWMCN1 PWMCN3 PWMR4

0Ch I2CCN_M I2CCN_S TACHV0 TACHV2 TACHV4

0Dh TB0CN I2CCK_M I2CCK_S TACHCN0 TACHCN2 TACHCN4

0Eh I2CTO_M I2CTO_S TACHV1 TACHV3

0Fh I2CSLA_M I2CSLA_S TACHCN1 TACHCN3 TACHR4

10h PD2 EIES6 MIIR3 MIIR4

11h PD1 TACHR5

12h PD6 TACHV5

13h TACHCN5

14h PWMC5

15h I2C_SPB PWMR5

16h ETS DEV_NUM PWMV5

17h ADCG1 PWMCN5

18h ADCG5 ICDT0 MIIR5

19h ADVOFF ICDT1

1Ah TOEX ICDC

1Bh ICDF

1Ch ICDB

1Dh ICDA

1Eh ICDD

1Fh

� �Maxim�Integrated� 4-2

MAX31782 User’s Guide

Revision 0; 8/11

T
ab

le
�4

-2
.�P

er
ip

h
er

al
�R

eg
is

te
r�

B
it

�F
u

n
ct

io
n

s
M

O
D

U
L

E
�0

R
E

G
IS

T
E

R
IN

D
E

X
15

14
13

12
11

10
9

8
7

6
5

4
3

2
1

0

P
O

2
00

h

P

O
2[

7:
0]

P
O

1
01

h

—

—
P

O
1[

5:
0]

M
IIR

0
03

h
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

TB
0

TB
0C

06
h

TB
0C

[1
5:

0]

TB
0R

07
h

TB
0R

[1
5:

0]

P
I2

08
h

P
I2

[7
:0

]

P
I1

09
h

—
—

P
I1

[5
:0

]

TB
0V

0B
h

TB
0V

[1
5:

0]

TB
0C

N
0D

h
C

/T
B

—
—

TB
C

S
TB

C
R

TB
P

S
[2

:0
]

TF
B

E
X

FB
TB

O
E

D
C

E
N

E
X

E
N

B
TR

B
E

TB
C

P
/R

LB

P
D

2
10

h

P

D
2[

7:
0]

P
D

1
11

h

—

—
P

D
1[

5:
0]

M
O

D
U

L
E

�1

R
E

G
IS

TE
R

IN
D

E
X

15
14

13
12

11
10

9
8

7
6

5
4

3
2

1
0

I2
C

B
U

F_
M

00
h

—
—

—
—

-—
—

—
—

D
[7

:0
]

I2
C

S
T_

M
01

h
I2

C
B

U
S

I2
C

B
U

S
Y

—
—

I2
C

S
P

I
I2

C
S

C
L

I2
C

R
O

I
I2

C
G

C
I

I2
C

N
A

C
K

I
—

I2
C

A
M

I
I2

C
TO

I
I2

C
S

TR
I

I2
C

R
X

I
I2

C
TX

I
I2

C
S

R
I

I2
C

IE
_M

02
h

—
—

—
—

I2
C

S
P

IE
—

I2
C

R
O

IE
I2

C
G

C
IE

I2
C

N
A

C
K

IE
—

I2
C

A
M

IE
I2

C
TO

IE
I2

C
S

TR
IE

I2
C

R
X

IE
I2

C
TX

IE
I2

C
S

R
IE

P
O

6
03

h

P

O
6_

7
P

O
6_

6
—

P
O

6_
4

P
O

6_
3

P
O

6_
2

P
O

6_
1

P
O

6_
0

M
IIR

1
04

h
—

—
—

—
—

—
I2

C
M

_W
U

I2
C

M
P

6_
7

P
6_

6
S

V
M

P
6_

4
P

6_
3

P
6_

2
P

6_
1

P
6_

0

E
IF

6
06

h

IF

P
6_

7
IF

P
6_

6
—

IF
P

6_
4

IF
P

6_
3

IF
P

6_
2

IF
P

6_
1

IF
P

6_
0

E
IE

6
07

h

IE

P
6_

7
IE

P
6_

7
—

IE
P

6_
4

IE
P

6_
3

IE
P

6_
2

IE
P

6_
1

IE
P

6_
0

P
I6

08
h

P
I6

_7
P

I6
_6

—
P

I6
_4

P
I6

_3
P

I6
_2

P
I6

_1
P

I6
_0

S
V

M
09

h
—

—
—

—
S

V
M

TH
[3

:0
]

—
—

—
S

V
M

S
TO

P
S

V
M

I
S

V
M

IE
S

V
M

R
D

Y
S

V
M

E
N

I2
C

C
N

_M
0C

h
—

—
—

—
—

—
I2

C
S

TR
E

N
I2

C
G

C
E

N
I2

C
S

TO
P

I2
C

ST
AR

T
I2

C
A

C
K

I2
C

S
TR

S
—

I2
C

M
O

D
E

I2
C

M
S

T
I2

C
E

N

I2
C

C
K

_M
0D

h
I2

C
C

K
H

[7
:0

]
I2

C
C

K
L[

7:
0]

I2
C

TO
_M

0E
h

I2
C

TO
[7

:0
]

I2
C

S
LA

_M
0F

h
—

—
—

—
—

—
—

—
—

A
[6

:0
]

E
IE

S
6

10
h

IE
S

P
6_

7
IE

S
P

6_
7

—
IE

S
P

6_
4

IE
S

P
6_

3
IE

S
P

6_
2

IE
S

P
6_

1
IE

S
P

6_
0

P
D

6
12

h

P

D
6[

7:
0]

E
TS

16
h

—
—

—
—

—
—

—
—

E
X

TE
R

N
A

L
TE

M
P

 S
LO

P
E

 [
7:

0]

A
D

C
G

1
17

h
—

A
D

C
 V

O
LT

A
G

E
 S

C
A

LE
 T

R
IM

 F
O

R
 G

A
IN

 1
 [

14
:0

]

A
D

C
G

5
18

h
—

A
D

C
 V

O
LT

A
G

E
 S

C
A

LE
 T

R
IM

 F
O

R
 G

A
IN

 5
 [

14
:0

]

A
D

V
O

FF
19

h
A

D
C

 V
O

LT
A

G
E

 O
FF

S
E

T
[1

5:
0]

TO
E

X
1A

h
E

X
TE

R
N

A
L

TE
M

P
 O

FF
S

E
T

[1
5:

0]

� �Maxim�Integrated� 4-3

MAX31782 User’s Guide

Revision 0; 8/11

T
ab

le
�4

-2
.�P

er
ip

h
er

al
�R

eg
is

te
r�

B
it

�F
u

n
ct

io
n

s�
(c

o
n

ti
n

u
ed

)
M

O
D

U
L

E
�2

R
E

G
IS

T
E

R
IN

D
E

X
15

14
13

12
11

10
9

8
7

6
5

4
3

2
1

0

I2
C

B
U

F_
S

00
h

—
—

—
—

—
—

—
—

D
[7

:0
]

I2
C

S
T_

S
01

h
I2

C
B

U
S

I2
C

B
U

S
Y

—
—

I2
C

S
P

I
I2

C
S

C
L

I2
C

R
O

I
I2

C
G

C
I

I2
C

N
A

C
K

I
—

I2
C

A
M

I
I2

C
TO

I
I2

C
S

TR
I

I2
C

R
X

I
I2

C
TX

I
I2

C
S

R
I

I2
C

IE
_S

02
h

—
—

—
—

I2
C

S
P

IE
—

I2
C

R
O

IE
I2

C
G

C
IE

I2
C

N
A

C
K

IE
—

I2
C

A
M

IE
I2

C
TO

IE
I2

C
S

TR
IE

I2
C

R
X

IE
I2

C
TX

IE
I2

C
S

R
IE

M
IIR

2
03

h
—

—
—

—
—

—
—

—
—

—
—

—
—

I2
C

S
_W

U
I2

C
S

A
D

C

A
D

S
T

06
h

—
—

—
—

A
D

D
A

T[
3:

0]
—

A
D

C
O

N
V

A
D

D
A

I
A

D
C

FG
A

D
ID

X
[3

:0
]

A
D

A
D

D
R

07
h

—
—

—
—

A
D

B
A

D
D

[3
:0

]
—

A
D

S
TA

R
T[

2:
0]

—
A

D
E

N
D

[2
:0

]

A
D

C
N

08
h

—
A

D
C

C
LK

[2
:0

]
A

D
D

A
IN

V
[1

:0
]

—
—

IR
E

FE
N

A
D

C
O

N
T

A
D

D
A

IE
—

A
D

A
C

Q
[3

:0
]

A
D

D
A

TA
09

h
A

D
D

A
TA

[1
5:

0]
, S

E
E

 S
E

C
TI

O
N

 6
: A

na
lo

g
-t

o-
D

ig
ita

l C
on

ve
rt

er
 (

A
D

C
)

FO
R

 D
E

TA
IL

S

I2
C

C
N

_S
0C

h
—

—
—

—
—

—
I2

C
S

TR
E

N
I2

C
G

C
E

N
I2

C
S

TO
P

I2
C

S
TA

R
T

I2
C

A
C

K
I2

C
S

TR
S

—
I2

C
M

O
D

E
I2

C
M

S
T

I2
C

E
N

I2
C

C
K

_S
0D

h
I2

C
C

K
H

[7
:0

]
I2

C
C

K
L[

7:
0]

I2
C

TO
_S

0E
h

I2
C

TO
[7

:0
]

I2
C

S
LA

_S
0F

h
—

—
—

—
—

—
—

—
—

A
[6

:0
]

I2
C

_S
P

B
15

h
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

I2
C

_S
P

E

D
E

V
_N

U
M

16
h

D
E

V
IC

E
 N

U
M

B
E

R
[7

:0
]

IC
D

T0
18

h
IC

D
T0

[1
5:

0]

IC
D

T1
19

h
IC

D
T1

[1
5:

0]

IC
D

C
1A

h

D

M
E

—
R

E
G

E
—

C
M

D
[3

:0
]

IC
D

F
1B

h

—

—
—

—
P

S
S

1
P

S
S

0
JT

A
G

_S
P

E
TX

C

IC
D

B
1C

h

IC

D
B

[7
:0

]

IC
D

A
1D

h
IC

D
A

[1
5:

0]

IC
D

D
1E

h
IC

D
D

[1
5:

0]

M
O

D
U

L
E

�3

R
E

G
IS

T
E

R
IN

D
E

X
15

14
13

12
11

10
9

8
7

6
5

4
3

2
1

0

P
W

M
C

0
00

h
P

W
M

C
0[

15
:0

]

P
W

M
R

0
01

h
P

W
M

R
0[

15
:0

]

P
W

M
C

1
02

h
P

W
M

C
1[

15
:0

]

P
W

M
R

1
03

h
P

W
M

R
1[

15
:0

]

S
M

B
U

S
04

h
—

—
—

—
—

—
—

—
—

—
—

—
R

E
S

E
T_

S
R

E
S

E
T_

M
S

M
B

_M
O

D
_S

S
M

B
_M

O
D

_M

TA
C

H
R

0
05

h
TA

C
H

R
0[

15
:0

]

TA
C

H
R

1
07

h
TA

C
H

R
1[

15
:0

]

P
W

M
V

0
08

h
P

W
M

V
0[

15
:0

]

P
W

M
C

N
0

09
h

—
—

—
P

W
M

C
S

P
W

M
C

R
P

W
M

P
S

[2
:0

]
TF

B
—

—
D

C
E

N
—

P
W

M
E

N
E

TB
—

P
W

M
V

1
0A

h
P

W
M

V
1[

15
:0

]

P
W

M
C

N
1

0B
h

—
—

—
P

W
M

C
S

P
W

M
C

R
P

W
M

P
S

[2
:0

]
TF

B
—

—
D

C
E

N
—

P
W

M
E

N
E

TB
—

TA
C

H
V

0
0C

h
TA

C
H

V
0[

15
:0

]

TA
C

H
C

N
0

0D
h

—
TR

P
S

[1
:0

]
—

—
TP

S
[2

:0
]

TF
TE

X
F

—
—

TE
X

E
N

TA
C

H
E

TA
C

H
IE

—

TA
C

H
V

1
0E

h
TA

C
H

V
1[

15
:0

]

TA
C

H
C

N
1

0F
h

—
TR

P
S

[1
:0

]
—

—
TP

S
[2

:0
]

TF
TE

X
F

—
—

TE
X

E
N

TA
C

H
E

TA
C

H
IE

—

M
IIR

3
10

h
—

—
—

—
—

—
—

—
—

—
—

—
—

—
TA

C
H

1
TA

C
H

0

� � Maxim�Integrated�� � 4-4

MAX31782 User’s Guide

Revision 0; 8/11

T
ab

le
�4

-2
.�P

er
ip

h
er

al
�R

eg
is

te
r�

B
it

�F
u

n
ct

io
n

s�
(c

o
n

ti
n

u
ed

)
M

O
D

U
L

E
�4

R
E

G
IS

T
E

R
IN

D
E

X
15

14
13

12
11

10
9

8
7

6
5

4
3

2
1

0

P
W

M
C

2
00

h
P

W
M

C
2[

15
:0

]

P
W

M
R

2
01

h
P

W
M

R
2[

15
:0

]

P
W

M
C

3
02

h
P

W
M

C
3[

15
:0

]

P
W

M
R

3
03

h
P

W
M

R
3[

15
:0

]

TA
C

H
R

2
05

h
TA

C
H

R
2[

15
:0

]

TA
C

H
R

3
07

h
TA

C
H

R
3[

15
:0

]

P
W

M
V

2
08

h
P

W
M

V
2[

15
:0

]

P
W

M
C

N
2

09
h

—
—

—
P

W
M

C
S

P
W

M
C

R
P

W
M

P
S

[2
:0

]
TF

B
—

—
D

C
E

N
—

P
W

M
E

N
E

TB
—

P
W

M
V

3
0A

h
P

W
M

V
3[

15
:0

]

P
W

M
C

N
3

0B
h

—
—

—
P

W
M

C
S

P
W

M
C

R
P

W
M

P
S

[2
:0

]
TF

B
—

—
D

C
E

N
—

P
W

M
E

N
E

TB
—

TA
C

H
V

2
0C

h
TA

C
H

V
2[

15
:0

]

TA
C

H
C

N
2

0D
h

—
TR

P
S

[1
:0

]
—

—
TP

S
[2

:0
]

TF
TE

X
F

—
—

TE
X

E
N

TA
C

H
E

TA
C

H
IE

—

TA
C

H
V

3
0E

h
TA

C
H

V
3[

15
:0

]

TA
C

H
C

N
3

0F
h

—
TR

P
S

[1
:0

]
—

—
TP

S
[2

:0
]

TF
TE

X
F

—
—

TE
X

E
N

TA
C

H
E

TA
C

H
IE

—

M
IIR

4
10

h
—

—
—

—
—

—
—

—
—

—
—

—
—

—
TA

C
H

3
TA

C
H

2

M
O

D
U

L
E

�5

R
E

G
IS

T
E

R
IN

D
E

X
15

14
13

12
11

10
9

8
7

6
5

4
3

2
1

0

M
C

N
T

00
h

O
F

M
C

W
C

LD
S

Q
U

O
P

C
S

M
S

U
B

M
M

A
C

S
U

S

M
A

01
h

M
A

[1
5:

0]

M
B

02
h

M
B

[1
5:

0]

M
C

2
03

h
M

C
2[

15
:0

]

M
C

1
04

h
M

C
1[

15
:0

]

M
C

0
05

h
M

C
0[

15
:0

]

M
C

1R
06

h
M

C
1R

[1
5:

0]

M
C

0R
07

h
M

C
0R

[1
5:

0]

P
W

M
V

4
08

h
P

W
M

V
4[

15
:0

]

P
W

M
C

N
4

09
h

—
—

—
P

W
M

C
S

P
W

M
C

R
P

W
M

P
S

[2
:0

]
TF

B
—

—
D

C
E

N
—

P
W

M
E

N
E

TB
—

P
W

M
C

4
0A

h
P

W
M

C
4[

15
:0

]

P
W

M
R

4
0B

h
P

W
M

R
4[

15
:0

]

TA
C

H
V

4
0C

h
TA

C
H

V
4[

15
:0

]

TA
C

H
C

N
4

0D
h

—
TR

P
S

[1
:0

]
—

—
TP

S
[2

:0
]

TF
TE

X
F

—
—

TE
X

E
N

TA
C

H
E

TA
C

H
IE

—

TA
C

H
R

4
0F

h
TA

C
H

R
4[

15
:0

]

TA
C

H
R

5
11

h
TA

C
H

R
5[

15
:0

]

TA
C

H
V

5
12

h
TA

C
H

V
5[

15
:0

]

TA
C

H
C

N
5

13
h

—
TR

P
S

[1
:0

]
—

—
TP

S
[2

:0
]

TF
TE

X
F

—
—

TE
X

E
N

TA
C

H
E

TA
C

H
IE

—

P
W

M
C

5
14

h
P

W
M

C
5[

15
:0

]

P
W

M
R

5
15

h
P

W
M

R
5[

15
:0

]

P
W

M
V

5
16

h
P

W
M

V
5[

15
:0

]

P
W

M
C

N
5

17
h

—
—

—
P

W
M

C
S

P
W

M
C

R
P

W
M

P
S

[2
:0

]
TF

B
—

—
D

C
E

N
—

P
W

M
E

N
E

TB
—

M
IIR

5
18

h
—

—
—

—
—

—
—

—
—

—
—

—
—

—
TA

C
H

5
TA

C
H

4

� � Maxim�Integrated� 5-1

MAX31782 User’s Guide

Revision 0; 8/11

SECTION 5: INTERRUPTS

5 .1 Servicing Interrupts .5-2

5 .2 Module Interrupt Identification Registers . .5-5

5 .2 .1 Peripheral Module 0 Interrupt Identification Register (MIIR0, M0[03h]) .5-5

5 .2 .2 Peripheral Module 1 Interrupt Identification Register (MIIR1, M1[04h]) .5-5

5 .2 .3 Peripheral Module 2 Interrupt Identification Register (MIIR2, M2[03h]) .5-6

5 .2 .4 Peripheral Module 3 Interrupt Identification Register (MIIR3, M3[10h]) .5-6

5 .2 .5 Peripheral Module 4 Interrupt Identification Register (MIIR4, M4[10h]) .5-6

5 .2 .6 Peripheral Module 5 Interrupt Identification Register (MIIR5, M5[18h]) .5-7

5 .3 Interrupt System Operation .5-7

5 .3 .1 Synchronous vs . Asynchronous Interrupt Sources .5-7

5 .3 .2 Interrupt Prioritization by Software .5-8

5 .3 .3 Interrupt Exception Window .5-8

LIST OF TABLES

Table 5-1 . Interrupt Sources and Control Bits .5-4

LIST OF FIGURES

Figure 5-1 . Interrupt Hierarchy . .5-3

This section contains the following information:

� �Maxim�Integrated�� � 5-2

MAX31782 User’s Guide

Revision 0; 8/11

SECTION 5: INTERRUPTS
The MAX31782 provides a single, programmable interrupt vector (IV) that can be used to handle internal and external
interrupts . Interrupts can be generated from system level sources (e .g ., watchdog timer) or by sources associated with
the peripheral modules . Only one interrupt can be handled at a time, and all interrupts naturally have the same priority .
A programmable interrupt mask register (IMR) allows software-controlled prioritization and nesting of high-priority inter-
rupts . Figure 5-1 shows a diagram of the interrupt hierarchy .

5.1�Servicing�Interrupts
For the MAX31782 to service an interrupt, interrupts must be enabled globally, modularly, and locally . The interrupt
global enable (IGE) bit located in the interrupt and control (IC) register acts as a global interrupt mask . This bit defaults
to 0, and it must be set to 1 before any interrupt takes place .

The local interrupt-enable bit for a particular source is in one of the peripheral registers associated with that peripheral
module, or in a system register for any system interrupt source . Between the global and local enables are intermedi-
ate per-module and system interrupt mask bits . These mask bits reside in the interrupt mask system register (IMR) .
By implementing intermediate per-module masking capability in a single register, interrupt sources spanning multiple
modules can be selectively enabled/disabled in a single instruction . This promotes a simple, fast, and user-definable
interrupt prioritization scheme . The interrupt source-enable hierarchy is illustrated in Figure 5-1 as well as Table 5-1 .

When an interrupt condition occurs, its individual flag is set, even if the interrupt source is disabled at the local, module,
or global level . Interrupt flags must be cleared within the user interrupt routine to avoid repeated interrupts from the
same source .

Since all interrupts vector to the address contained in the interrupt vector register (IV), the interrupt identification reg-
ister (IIR) can be used by the interrupt service routine to determine the module source of an interrupt . The IIR register
contains a bit flag for each peripheral module and one flag associated with all system interrupts; if the bit for a module
is set, then an interrupt is pending that was initiated by that module .

The MAX31782 provides two ways to determine which block inside a module caused an interrupt to occur . Each module
has a module interrupt identification register (MIIR) that indicates which of the module’s interrupt sources has a pend-
ing interrupt . The peripheral register bits inside the module also provide a way to differentiate among interrupt sources .
Section 5.2 Module Interrupt Identification Registers has more detail on the MIIR registers .

The IV register provides the location of the interrupt service routine . It can be set to any location within program memory .
The IV register defaults to 0000h on reset or power-up, so if it is not changed to a different address, the user program
must determine whether a jump to 0000h came from a reset or interrupt source .

� � Maxim�Integrated�� � 5-3

MAX31782 User’s Guide

Revision 0; 8/11

Figure 5-1. Interrupt Hierarchy

WDCN.WDIF

WATCHDOG INTERRUPTS

WDCN.EWDI (LOCAL ENABLE)

IIR.II1

IMR.IM1
MODULE 1 ENABLE

JUMP TO
INTERRUPT

VECTOR

IC.INS
INTERRUPT IS NOT

IN SERVICE

IC.IGE
GLOBAL ENABLE

IIR.IIS

IMR.IMS
MODULE ENABLE

EXTERNAL INTERRUPT P6.0: EIF6.IFP6_0

GPIO INTERRUPTS

MODULE 1

LOCAL ENABLE EIE6.IEP6_0

EXTERNAL INTERRUPT P6.n: EIF6.IFP6_n

LOCAL ENABLE EIE6.IEP6_n

MASTER I2C START INTERRUPT I2CST_M.I2CSRI

MASTER I2C INTERRUPTS

LOCAL ENABLE I2CIE_M.I2CSRIE

ANY I2C INTERRUPT I2CST_M.x

LOCAL ENABLE I2CIE_M.x

OVERFLOW TB0CN.TFB

LOCAL ENABLE TB0CN.ETB

SVM INTERRUPT SVM.SVMI

SVM INTERRUPTS

LOCAL ENABLE SVM.SVMIE

IIR.II3

IMR.IM3
MODULE 3 ENABLE

OVERFLOW TACHCN0.TF

TACHOMETER 0 INTERRUPTS

MODULE 3

LOCAL ENABLE TACHCN0.TACHIE

EDGE TRIGGER TACHCN0.TEXF

LOCAL ENABLE TACHCN0.TACHIE

OVERFLOW TACHCN1.TF

TACHOMETER 1 INTERRUPTS

LOCAL ENABLE TACHCN1.TACHIE

EDGE TRIGGER TACHCN1.TEXF

LOCAL ENABLE TACHCN1.TACHIE

NOTE: ONLY A FEW OF THE MAX31782 MODULES AND INTERRUPT SOURCES ARE SHOWN IN THIS INTERRUPT HIERARCHY FIGURE. REFER TO THE CORRESPONDING
SECTIONS OF THIS USER’S GUIDE FOR MORE DETAILED INFORMATION ABOUT ALL THE POSSIBLE INTERRUPTS.

SYSTEM MODULE

EXTERNAL TRIGGER TB0CN.EXFB

TIMER B INTERRUPTS

LOCAL ENABLE TB0CN.ETB IIR.II0

IMR.IM0
MODULE 0 ENABLE

MODULE 0

� � Maxim�Integrated� 5-4

MAX31782 User’s Guide

Revision 0; 8/11

Table�5-1.�Interrupt�Sources�and�Control�Bits

INTERRUPT INTERRUPT�FLAG LOCAL�ENABLE�BIT

MODULE�
INTERRUPT�

IDENTIFICATION�
BIT

INTERRUPT�
IDENTIFICATION�

BIT

MODULE�
ENABLE�

BIT

Timer B: External Trigger TB0CN .EXFB
TB0CN .ETB MIIR0 .TB0 IIR .II0 IMR .IM0

Timer B: Overflow TB0CN .TFB

I2C Master START Interrupt I2CST_M .I2CSRI I2CIE_M .I2CSRIE

MIIR1 .I2CM

IIR .II1 IMR .IM1

I2C Master Transmit Complete Interrupt I2CST_M .I2CTXI I2CIE_M .I2CTXIE

I2C Master Receive Ready Interrupt I2CST_M . I2CRXI I2CIE_M .I2CRXIE

I2C Master Clock Stretch Interrupt I2CST_M .I2CSTRI I2CIE_M .I2CSTRIE

I2C Master Timeout Interrupt I2CST_M .I2CTOI I2CIE_M .I2CTOIE

I2C Master NACK Interrupt I2CST_M .I2CNACKI I2CIE_M .I2CNACKIE

I2C Master Receiver Overrun Interrupt I2CST_M .I2CROI I2CIE_M .I2CROIE

I2C Master STOP Interrupt I2CST_M .I2CSPI I2CIE_M .I2CSPIE

I2C Master Wake-Up Interrupt I2CST_M .I2CSRI I2CIE_M .I2CSRIE MIIR1 .I2CM_WU

External Interrupt P6 .0 EIF6 .IFP6_0 EIE6 .IEP6_0 MIIR1 .P6_0

External Interrupt P6 .1 EIF6 .IFP6_1 EIE6 .IEP6_1 MIIR1 .P6_1

External Interrupt P6 .2 EIF6 .IFP6_2 EIE6 .IEP6_2 MIIR1 . P6_2

External Interrupt P6 .3 EIF6 .IFP6_3 EIE6 .IEP6_3 MIIR1 . P6_3

External Interrupt P6 .4 EIF6 .IFP6_4 EIE6 .IEP6_4 MIIR1 . P6_4

External Interrupt P6 .6 EIF6 .IFP6_6 EIE6 .IEP6_6 MIIR1 . P6_6

External Interrupt P6 .7 EIF6 .IFP6_7 EIE6 .IEP6_7 MIIR1 . P6_7

Supply Voltage Monitor Interrupt SVM .SVMI SVM .SVMIE MIIR1 .SVM

I2C Slave START Interrupt I2CST_S .I2CSRI I2CIE_S .I2CSRIE

MIIR2 .I2CS

IIR .II2 IMR .IM2

I2C Slave Transmit Complete Interrupt I2CST_S .I2CTXI I2CIE_S .I2CTXIE

I2C Slave Receive Ready Interrupt I2CST_S . I2CRXI I2CIE_S .I2CRXIE

I2C Slave Clock Stretch Interrupt I2CST_S .I2CSTRI I2CIE_S .I2CSTRIE

I2C Slave Timeout Interrupt I2CST_S .I2CTOI I2CIE_S .I2CTOIE

I2C Slave Address Match Interrupt I2CST_S .I2CAMI I2CIE_S .I2CAMIE

I2C Slave NACK Interrupt I2CST_S .I2CNACKI I2CIE_S .I2CNACKIE

I2C Slave General Call Interrupt I2ST_S .I2CGCI I2CIE_S .I2CGCIE

I2C Slave Receiver Overrun Interrupt I2CST_S .I2CROI I2CIE_S .I2CROIE

I2C Slave STOP Interrupt I2CST_S .I2CSPI I2CIE_S .I2CSPIE

I2C Slave Wake-Up Interrupt I2CST_S .I2CSRI I2CIE_S .I2CSRIE MIIR2 .I2CS_WU

ADC Data Available Interrupt ADST .ADDAI ADCN .ADDAIE MIIR2 .ADC

TACH .0 Overflow TACHCN0 .TF
TACHCN0 .TACHIE MIIR3 .TACH0

IIR .II3 IMR .IM3
External TACH .0 Trigger TACHCN0 .TEXF

TACH .1 Overflow TACHCN1 .TF
TACHCN1 .TACHIE MIIR3 .TACH1

External TACH .1 Trigger TACHCN1 .TEXF

TACH .2 Overflow TACHCN2 .TF
TACHCN2 .TACHIE MIIR4 .TACH2

IIR .II4 IMR .IM4
External TACH .2 Trigger TACHCN2 .TEXF

TACH .3 Overflow TACHCN3 .TF
TACHCN3 .TACHIE MIIR4 .TACH3

External TACH .3 Trigger TACHCN3 .TEXF

TACH .4 Overflow TACHCN4 .TF
TACHCN4 .TACHIE MIIR5 .TACH4

IIR .II5 IMR .IM5
External TACH .4 Trigger TACHCN4 .TEXF

TACH .5 Overflow TACHCN5 .TF
TACHCN5 .TACHIE MIIR5 .TACH5

External TACH .5 Trigger TACHCN5 .TEXF

Watchdog Interrupt WDCN .WDIF WDCN .EWDI N/A IIR .IIS IMR .IMS

� �Maxim�Integrated�� � 5-5

MAX31782 User’s Guide

Revision 0; 8/11

5.2�Module�Interrupt�Identification�Registers
The MIIR registers are implemented to indicate which particular function within a peripheral module has caused the
interrupt . The MAX31782 has six peripheral modules, M0 to M5 . An MIIR register is implemented in each peripheral
module . The MIIR registers are 16-bit read-only registers and all of them default to 0000h on system reset .

Each defined bit in an MIIR register is the final interrupt from a specific function, i .e ., the interrupt enable bit(s) ANDed
with the interrupt flag(s) . A function can have multiple flags, but they all are ANDed with corresponding enable bits and
combined to create a single interrupt identification bit for that specific function . For example, the I2C master has several
interrupt sources; however, they all are combined to form a single identification bit, MIIR1 .I2CM . The individual register
bit functions are defined as follows .

5.2.1�Peripheral�Module�0�Interrupt�Identification�Register�(MIIR0,�M0[03h])

5.2.2�Peripheral�Module�1�Interrupt�Identification�Register�(MIIR1,�M1[04h])

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Name — — — — — — — — — — — — — — — TB0

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Access r r r r r r r r r r r r r r r r

BIT NAME DESCRIPTION

15:1 — Reserved . A read returns 0 .

0 TB0 This bit is set when an interrupt is generated by the Timer/Counter B module .

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Name — — — — — — I2CM_WU I2CM P6_7 P6_6 SVM P6_4 P6_3 P6_2 P6_1 P6_0

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Access r r r r r r r r r r r r r r r r

BIT NAME DESCRIPTION

15:10 — Reserved . A read returns 0 .

9 I2CM_WU

This bit is set when there is a wake-up interrupt from the I2C master block . For this to occur, the I2C
master block must be operating as a slave . See SECTION 8: I2C-Compatible Master Interface for
more details on this operation . The wake-up interrupt function is identical to the function described
for the I2CS_WU bit in MIIR2 .

8 I2CM
This bit is set when there is an interrupt from the I2C master block . The I2C interrupt is a combina-
tion of all interrupts defined in the I2CST_M register for the I2C master block . See SECTION 8: I2C-
Compatible Master Interface for more details on the individual interrupts .

7 P6_7 This bit is set when there is an external GPIO Interrupt at P6 .7 (slave I2C SDA) .

6 P6_6 This bit is set when there is an external GPIO Interrupt at P6 .6 (slave I2C SCL) .

5 SVM This bit is set when there is an interrupt from supply voltage monitor (SVM) .

4 P6_4 This bit is set when there is an external interrupt at P6 .4 .

3 P6_3 This bit is set when there is an external interrupt at P6 .3 .

2 P6_2 This bit is set when there is an external interrupt at P6 .2 .

1 P6_1 This bit is set when there is an external interrupt at P6 .1 .

0 P6_0 This bit is set when there is an external interrupt at P6 .0 .

� Maxim�Integrated� 5-6

MAX31782 User’s Guide

Revision 0; 8/11

5.2.3�Peripheral�Module�2�Interrupt�Identification�Register�(MIIR2,�M2[03h])

5.2.4�Peripheral�Module�3�Interrupt�Identification�Register�(MIIR3,�M3[10h])

5.2.5�Peripheral�Module�4�Interrupt�Identification�Register�(MIIR4,�M4[10h])

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Name — — — — — — — — — — — — — I2CS_WU I2CS ADC

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Access r r r r r r r r r r r r r r r r

BIT NAME DESCRIPTION

15:3 — Reserved . A read returns 0 .

2 I2CS_WU

This bit is set when there is a wake-up interrupt from the I2C slave block . A wake-up interrupt is
defined as an I2C START signal only when the CPU is operating in stop mode . As the CPU clock
is not running in stop mode, this is an asynchronous interrupt . This interrupt causes the MAX31782
to automatically transition from stop mode to CPU mode . The wake-up interrupt shares the same
enable bits as the slave I2C START interrupt I2CSRI . Once set, this bit is cleared by clearing the
I2CST_S .I2CSRI bit .

1 I2CS
This bit is set when there is an interrupt from the I2C slave block . The I2C interrupt is a combina-
tion of all interrupts defined in the I2CST_S register for the I2C slave block . See SECTION 7: I2C-
Compatible Slave Interface for more details on the individual interrupts .

0 ADC This bit is set when there is an interrupt from the ADC .

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Name — — — — — — — — — — — — — — TACH1 TACH0

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Access r r r r r r r r r r r r r r r r

BIT NAME DESCRIPTION

15:2 — Reserved . A read returns 0 .

1 TACH1 This bit is set when there is an interrupt from tachometer 1 (TACH .1) .

0 TACH0 This bit is set when there is an interrupt from tachometer 0 (TACH .0) .

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Name — — — — — — — — — — — — — — TACH3 TACH2

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Access r r r r r r r r r r r r r r r r

BIT NAME DESCRIPTION

15:2 — Reserved . A read returns 0 .

1 TACH3 This bit is set when there is an interrupt from tachometer 3 (TACH .3) .

0 TACH2 This bit is set when there is an interrupt from tachometer 2 (TACH .2) .

� � Maxim�Integrated� 5-7

MAX31782 User’s Guide

Revision 0; 8/11

5.2.6�Peripheral�Module�5�Interrupt�Identification�Register�(MIIR5,�M5[18h])

5.3�Interrupt�System�Operation
The interrupt handler hardware responds to any interrupt event when it is enabled . An interrupt event occurs when
an interrupt flag is set . All interrupt requests are sampled at the rising edge of the clock and can be serviced by the
processor one clock cycle later, assuming the request does not hit the interrupt exception window . The one-cycle stall
between detection and acknowledgement/servicing is due to the fact that the current instruction may also be accessing
the stack . For this reason, the CPU must allow the current instruction to complete before pushing the stack and vector-
ing to IV . If an interrupt exception window is generated by the currently executing instruction, the following instruction
must be executed, so the interrupt service routine is delayed an additional cycle .

Interrupt operation in the MAX31782 CPU is essentially a state machine generated long CALL instruction . When the
interrupt handler services an interrupt, it temporarily takes control of the CPU to perform the following sequence of
actions:

1) The next instruction fetch from program memory is cancelled .

2) The return address is pushed on to the stack .

3) The INS bit is set to 1 to prevent recursive interrupt calls .

4) The instruction pointer is set to the location of the interrupt service routine (contained in the IV register) .

5) The CPU begins executing the interrupt service routine .

Once the interrupt service routine completes, it should use the RETI instruction to return to the main program . Execution
of RETI involves the following sequence of actions:

1) The return address is popped off the stack .

2) The INS bit is cleared to 0 to re-enable interrupt handling .

3) The instruction pointer is set to the return address that was popped off the stack .

4) The CPU continues execution of the main program .

Pending interrupt requests do not interrupt an RETI instruction; a new interrupt is serviced after first being acknowl-
edged in the execution cycle that follows the RETI instruction and then after the standard one stall cycle of interrupt
latency . This means there are at least two cycles between back-to-back interrupts .

5.3.1�Synchronous�vs.�Asynchronous�Interrupt�Sources
Interrupt sources can be classified as either asynchronous or synchronous . All internal interrupts are synchronous inter-
rupts . An internal interrupt is directly routed to the interrupt handler that can be recognized in one cycle . All external
interrupts are asynchronous interrupts by nature . When the device is not in stop mode, asynchronous interrupt sources
are passed through a 3-clock sampling/glitch filter circuit before being routed to the interrupt handler . The sampling/
glitch filter circuit is running on the system clock . An interrupt request with a pulse width less than three system clock
cycles is not recognized . Note that the granularity of interrupt source is at module level . Synchronous interrupts and
sampled asynchronous interrupts assigned to the same module produce a single interrupt to the interrupt handler .

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Name — — — — — — — — — — — — — — TACH5 TACH4

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Access r r r r r r r r r r R r r r r r

BIT NAME DESCRIPTION

15:2 — Reserved . A read returns 0 .

1 TACH5 This bit is set when there is an interrupt from tachometer 5 (TACH .5) .

0 TACH4 This bit is set when there is an interrupt from tachometer 4 (TACH .4) .

� � Maxim�Integrated�� � 5-8

MAX31782 User’s Guide

Revision 0; 8/11

5.3.2�Interrupt�Prioritization�by�Software
All interrupt sources of the MAX31782 naturally have the same priority . However, when CPU operation vectors to the
programmed interrupt vector address, the order in which potential interrupt sources are interrogated is left entirely up
to the user, as this often depends upon the system design and application requirements . The IMR system register pro-
vides the ability to knowingly block interrupts from modules considered to be of lesser priority and manually re-enable
the interrupt servicing by the CPU (by setting INS = 0) . Using this procedure, a given interrupt service routine can con-
tinue executing, only to be interrupted by higher priority interrupts . An example demonstrating this software prioritization
is provided in the 19.8 Handling Interrupts section .

5.3.3�Interrupt�Exception�Window
An interrupt exception window is a noninterruptable execution cycle . During this cycle, the interrupt handler does not
respond to any interrupt requests . All interrupts that would normally be serviced during an interrupt exception window
are delayed until the next execution cycle .

Interrupt exception windows are used when two or more instructions must be executed consecutively without any
delays in between . Currently, there is a single condition in the MAX31782 that causes an interrupt exception window:
activation of the PFX register .

When the PFX register is activated by writing a value to it, it retains that value only for the next clock cycle . For the prefix
value to be used properly by the next instruction, the instruction that sets the prefix value and the instruction that uses
it must always be executed back to back . Therefore, writing to the PFX register causes an interrupt exception window
on the next cycle . If an interrupt occurs during an interrupt exception window, an additional latency of one cycle in the
interrupt handling is caused since the interrupt is not serviced until the next cycle .

� � Maxim�Integrated 6-1

MAX31782 User’s Guide

Revision 0; 8/11

SECTION 6: ANALOG-TO-DIGITAL CONVERTER (ADC)

6 .1 Detailed Description . .6-2

6 .1 .1 Conversion Modes .6-2

6 .1 .2 Conversion Sequencing . .6-3

6 .1 .3 ADC Conversion Time .6-3

6 .1 .4 ADC Data Reading . .6-5

6 .1 .5 ADC Interrupts .6-5

6 .1 .6 Using an External Reference .6-5

6 .1 .7 Stop Mode Operation . .6-5

6 .2 ADC Register Descriptions .6-6

6 .2 .1 ADC Control Register (ADCN) .6-6

6 .2 .2 ADC Status Register (ADST) .6-7

6 .2 .3 ADC Address Register (ADADDR) .6-7

6 .2 .4 ADC Data and Configuration Register (ADDATA) .6-8

6 .2 .4 .1 ADC Configuration Register (ADDATA when ADCFG = 1) . .6-8

6 .2 .4 .2 ADC Data Buffer (ADDATA when ADCFG = 0) .6-9

6 .2 .5 External Temperature Slope Control Register (ETS) .6-10

6 .2 .6 ADC External Temperature Offset Register (TOEX) .6-11

6 .2 .7 ADC Voltage Offset Register (ADVOFF) .6-11

6 .2 .8 ADC Voltage Scale Trim Registers (ADCG1 and ADCG5) .6-11

6 .3 ADC Code Examples .6-12

6 .3 .1 One Sequence of Four Temperature and Voltage Conversions .6-12

6 .3 .2 Continuous Conversion of 16 Samples .6-13

LIST OF TABLES

Table 6-1 . Extended Acquisition Time in Terms of ADC Clocks .6-4

Table 6-2 . ADC Interrupt Intervals .6-5

Table 6-3 . ADC Data Bit Weighting .6-9

Table 6-4 . ETS Register Settings .6-10

LIST OF FIGURES

Figure 6-1 . ADC Functional Block Diagram . .6-2

Figure 6-2 . Extended Acquisition Time .6-4

This section contains the following information:

� �Maxim�Integrated� 6-2

MAX31782 User’s Guide

Revision 0; 8/11

SECTION 6: ANALOG-TO-DIGITAL CONVERTER (ADC)
The MAX31782 contains a 12-bit analog-to-digital converter (ADC) with a 7-input mux (Figure 6-1) . The mux selects the
ADC input from six external channels and one internal channel . The six external channels can operate in fully differen-
tial voltage mode or in single-ended voltage mode . In addition, any of the six external channels can be configured to
measure the temperature of an external diode . The internal channel is used exclusively to measure the die temperature .

6.1�Detailed�Description

6.1.1�Conversion�Modes
The ADC in the MAX31782 can operate in three modes, which are selected using the EXTEMP and ADCH bits in the
configuration register:

1) Voltage Conversion Mode

2) External Temperature Sensing Mode

3) Internal Temperature Sensing Mode

In voltage conversion mode (EXTEMP = 0) and ADCH ≠ 6 or 7, the ADC reference can be either internal (IREFEN = 1)
or external (IREFEN = 0) . If the internal reference is used, the ADC full scale can be set to either 1 .225V (ADGAIN = 0)
or 5 .5V (ADGAIN = 1) . When an external reference is desired, the reference supply needs to be connected to pin AD3N .
See 6.1.6 Using an External Reference for more information about using an external reference .

When external temperature sensing mode is selected, current is forced into an external diode that is connected
between the user specified channel pins (set by ADCH[2:0]) . The diode voltage is converted into a digital value that
gives the temperature value . The ADC automatically uses the internal reference when performing a temperature conver-
sion . Whenever ADCH[2:0] = 6 or 7, internal temperature sensing mode is enabled and EXTEMP has no effect .

Figure 6-1. ADC Functional Block Diagram

ADC
SEQUENCER

CONFIGURATION[0]

DATA BUFFER[15]

DATA BUFFER[1]
DATA BUFFER[0]

ADCFG = 1
ADIDX[2:0]

ADCFG = 0
ADIDX[3:0]

ADDATA

CONFIGURATION[7]

CONFIGURATION[1]

AD
ST

AR
T

AD
EN

D

AD
CO

NV

AD
CO

NT
AD

CG
1

ADGAIN

CURRENT SOURCE
EXTEMP = 1 OR
ADCH = 6 OR 7

MUX

12-BIT ADC CORE

VO
LT

AG
E

OF
FS

ET
 (A

DV
OF

F)

TE
M

PE
RA

TU
RE

 O
FF

SE
T

(T
OE

X)

TE
M

PE
RA

TU
RE

 S
CA

LE
 (E

TS
)

IN
TE

RN
AL

 R
EF

ER
EN

CE

EX
TE

RN
AL

 R
EF

ER
EN

CE

AD0P

AD0N

AD5P

AD5N

ADCH = 6 OR 7

INTERNAL
CHANNEL

AD
CG

5

� �Maxim�Integrated� 6-3

MAX31782 User’s Guide

Revision 0; 8/11

6.1.2�Conversion�Sequencing
The MAX31782 ADC performs a user-defined sequence of up to eight conversions . Each conversion in a sequence
is set up using one of the eight ADC configuration registers . The configuration registers are accessed by writing to
the ADDATA register when ADST .ADCFG = 1 . The configuration register pointed to by ADDATA is selected using the
ADIDX bits in the ADST register . The individual configuration registers allows each of the conversions in a sequence to
select from the following options . For more information, see the 6.2.4 ADC Data and Configuration Register (ADDATA)
description .

• External temperature or voltage conversion

• Full-scale range

• Extended acquisition enable

• ADC conversion data alignment (left or right)

• Differential or single-ended conversion

• ADC channel selection

A sequence is set up in the ADADDR register by defining the starting conversion configuration address (ADSTART) and
an ending conversion configuration address (ADEND) . The configuration start address designates the configuration
register to be used for the first conversion in a sequence . The configuration end address designates the configuration
register used for the last conversion in a sequence . A single channel conversion can be viewed as a special case for
sequence conversion, where the starting and ending configuration address is the same . The configuration registers
can be viewed as a circular register array where ADSTART does not have to be less than ADEND . For example, if
ADSTART = 1 and ADEND = 5, the sequence of conversions would be configurations 1, 2, 3, 4, 5 . If ADSTART = 5 and
ADEND = 1, the sequence of conversions would be configurations 5, 6, 7, 0, 1 .

The ADC has two conversion sequence modes, single and continuous, which is set by the ADCONT bit . The start
conversion bit (ADCONV) is used to start all conversions . In single sequence mode (ADCONT = 0), ADCONV remains
set until the ADC has finished conversion on the last channel in the sequence . In continuous mode (ADCONT = 1), the
ADCONV bit remains set until the continuous mode is stopped . Writing a 0 to the ADCONV bit stops the ADC operation
at the completion of the current ADC conversion . Writing a 1 to the ADCONV bit when ADCONV bit is already set to 1
is ignored by the ADC controller .

6.1.3�ADC�Conversion�Time
The ADC clock is derived from the system clock with divide ratio defined by ADC clock divider bits (ADCN .
ADCCLK[2:0]) . Each sample takes 17 ADC clock cycles to complete . Three of the 17 ADC clock cycles are used for
sample acquisition, and the remaining 14 clocks are used for data conversion . The ADC automatically reads each mea-
surement twice and outputs the average of the two readings . This makes the resulting time for one complete conversion
34 ADC clock cycles .

Knowing this, it is possible to calculate the fastest ADC sample rate . The fastest ADC clock is:

ADC Clock = Sysclk/16 = 4MHz/16 = 250kHz

One conversion requires 34 ADC clocks:

Sample Rate = ADC Clock/34 Clocks = 250kHz/34 = 7 .353ksps, or 136Fs per sample

The ADC has an internal power management system that automatically shuts down the ADC when conversions are
complete by clearing ADCONV to 0 . After being shut down, the ADC begins conversions again when the ADCONV bit
is set to 1 again . After ADCONV is set to 1, the ADC requires 20 ADCCLK cycles to set up and power-up prior to begin-
ning the first conversion of the sequence .

In applications where extending the acquisition time is desired, the user can make use of the ADC acquisition extension
bits (ADCN .ADACQ[3:0]) . When the ADC acquisition extension is enabled (ADACQEN = 1), the sample is acquired
over a prolonged period . The extended acquisition time is determined by ADACQ[3:0] and the ADC clock divider used .
Table 6-1 shows the extended acquisition time in terms of ADC clocks at different ADACQ[3:0] and clock divider set-
tings . The total acquisition time, ACQ, is the extended acquisition time (ADACQ, as listed in Table 6-1) plus three ADC
clock cycles . Figure 6-2 shows the clocking required for one conversion .

�Maxim�Integrated�� � 6-4

MAX31782 User’s Guide

Revision 0; 8/11

The time required for the ADC to make a temperature measurement is greater than the time required for a voltage
measurement . When a temperature conversion is performed, the ADC’s internal current source forces current into the
diode connected to the channel . As the current is being sourced, the ADC integrates the voltage across the diode .
This is known as the integration time (tINT) . The integration time lasts approximately 2 .91ms . This integration time is a
constant and does not scale when the ADC clock speed is changed . When the integration time is complete, the ADC
performs a voltage conversion of the integration . The voltage conversion is a normal voltage conversion and takes 34
ADC clock cycles . A temperature conversion requires that this integration and conversion process be performed twice .
The extended acquisition time function does not apply when in temperature sensing mode . The time required for a
complete temperature conversion can be calculated to be:

2 x (tINT + 34 ADC clocks)

Table�6-1.�Extended�Acquisition�Time�in�Terms�of�ADC�Clocks

Figure 6-2. Extended Acquisition Time

ADACQ[3:0]
ADC�CLOCK�DIVIDER�

=�16
ADC�CLOCK�DIVIDER�

=�32
ADC�CLOCK�DIVIDER�

=�64
ADC�CLOCK�DIVIDER�

=�128

0 16 16 16 16

1 32 32 32 32

2 48 48 48 16

3 64 64 64 32

4 80 80 16 16

5 96 96 32 32

6 112 112 48 16

7 128 128 64 32

8 144 16 16 16

9 160 32 32 32

10 176 48 48 16

11 192 64 64 32

12 208 80 16 16

13 224 96 32 32

14 240 112 48 16

15 256 128 64 32

10 111 2 3 4 5 6 7 8 9 181615141312 28 2919 20 21 22 23 24 25 26 2717 34333231301 19 20

ADACQ

HOLD AND CONVERT SAMPLE 1 HOLD AND CONVERT SAMPLE 2
ADC

STARTUP SAMPLE 1 SAMPLE 2

ADC DATA
VALID

ADCCLK

ADCONV

ADDATA

� � Maxim�Integrated� � 6-5

MAX31782 User’s Guide

Revision 0; 8/11

6.1.4�ADC�Data�Reading
The ADC has a circular data buffer that holds the results from 16 conversions . This buffer is accessed by reading the
ADDATA register when ADCFG is set to 0 . The data buffer pointed to by ADST .ADIDX[3:0] is the buffer returned when
ADDATA is read . ADIDX is automatically incremented following a read of ADDATA . This allows repeated reads of
ADDATA to return the results from multiple conversions .

When ADCONV is set to 1, the conversion always starts writing to the buffer location indexed by the ADADDR .
ADBADD[3:0] bits . As each result is written to the data buffer, the ADDAT[3:0] bits in ADST update to indicate which
data buffer location was written to last . The ADC continues writing to the data buffer until the end of the buffer . Once
the end of the data buffer is reached, the ADC index rolls over and writes data buffer 0 .

When the ADC is operated in continuous sequence mode (ADCONT = 1), the data buffer is continuously written . For
example, with a sequence of seven conversions with ADBADD[3:0] equal to 0, the first sequence writes to data buffer
location 0 to 6, the second sequence writes to location 7 to 13 and the third sequence writes to 14, 15, 0 to 4 . If the
ADC is operating in single sequence mode, each time a new sequence is initiated by writing ADCCONV to 1, the ADC
begins writing to the location specified by ADBADD[3:0] .

6.1.5�ADC�Interrupts
The MAX31782 provides an interrupt flag (ADST .ADDAI) that is set when conversions are complete . This flag generates
an interrupt if enabled by setting the ADCN .ADDAIE interrupt enable bit . The condition that causes the ADDAI flag to
be set can be selected using the ADCN .ADDAINV[1:0] bits .

For a sequence that uses only one configuration register (ADSTART = ADEND), setting ADDAINV = 00 generates an
interrupt with the same interval as ADDAINV = 01 . In both cases, the ADDAI flag is set after every sample . The ADDAI
flag can be cleared by software writing a 0, or it is automatically cleared when a new conversion sequence is started
by setting ADCONV to a 1 .

6.1.6�Using�an�External�Reference
The ADC converter can use an external reference instead of the internal reference . When IREFEN = 0, the external
reference option is enabled . The external reference needs to be applied to pin AD3N . When the external reference is
used, voltage conversions can still be performed on the AD3P pin if they are done in single-ended mode (ADDIFF = 0) .
The voltage applied as an external reference must be between 1 .1 V and 1 .3 V .

The ADC converter automatically uses the gain setting in ADCG1 when an external reference is being used . Changing
the ADCG setting has no effect on the conversion . The gain that is applied by ADCG1 probably needs to be adjusted to
meet the needs of the application . See 6.2.8 ADC Voltage Scale Trim Registers (ADCG1 and ADCG5) for more details
on changing the gain .

6.1.7�Stop�Mode�Operation
The ADC converter supports stop mode operation . On entry into stop mode, the ADC is completely shut down to con-
serve power . On exiting stop mode, the ADC waits until ADCONV = 1 before starting up . When ADCONV is set to 1, the
ADC waits 20 ADC clock cycles for setup and power-up before acquisition commences .

To prevent erroneous behavior, any ADC conversions in progress should be completed or aborted prior to entry into
stop mode . If conversions are still ongoing on entry to stop mode, any in progress conversion are aborted and the
ADCONV bit is reset to 0 .

Table�6-2.�ADC�Interrupt�Intervals
ADDAINV[1:0] SET�ADDAI�AFTER

00 Every ADC sample

01 End of every sequence(ADSTART to ADEND)

10 Every 12 ADC samples

11 Every 16 ADC samples

� � Maxim�Integrated� � 6-6

MAX31782 User’s Guide

Revision 0; 8/11

6.2�ADC�Register�Descriptions
The ADC is controlled by ADC SFR registers . Four of the registers, ADST, ADADDR, ADCN, and ADDATA, are used for
setup, control, and reading from the ADC . There are five other registers, ETS, ADCG1, ADCG5, ADVOFF, and TOEX,
which are used to adjust the gains and offsets applied to ADC results . To avoid undesired operations, the user should
not write to bits labeled as reserved .

6.2.1�ADC�Control�Register�(ADCN)
Register Address: M2[08h]

*Unrestricted read, but can only be written to when ADCONV = 0.

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Name — ADCCLK2 ADCCLK1 ADCCLK0 ADDAINV1 ADDAINV0 — — IREFEN ADCONT ADDAIE — ADACQ3 ADACQ2 ADACQ1 ADACQ0

Reset 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

Access r rw* rw* rw* rw* rw* r r rw* rw* rw* r rw* rw* rw* rw*

BIT NAME DESCRIPTION

15 — Reserved . The user should not write to this bit .

14:12 ADCCLK[2:0]

ADC Clock Divider . These bits select the ADC conversion clock in relationship to the system clock .

ADCCLK[2:0] READ�AS ADC�CLOCK
000 011 Sysclk/16
001 011 Sysclk/16
010 011 Sysclk/16
011 011 Sysclk/16
100 100 Sysclk/16
101 101 Sysclk/32
110 110 Sysclk/64
111 111 Sysclk/128

11:10 ADDAINV[1:0]

ADC Data Available Interrupt Interval . These bits select the condition for setting data available inter-
rupt flag (ADDAI) .

ADDAINV[1:0] SET�ADDAI�AT
00 Every ADC sample
01 End of every sequence (ADSTART to ADEND)
10 Every 12 ADC samples
11 Every 16 ADC samples

9:8 — Reserved . The user should not write to these bits .

7 IREFEN

Internal Reference Enable . For voltage mode inputs, setting this bit to 1 enables the internal refer-
ence and clearing this bit to 0 chooses external reference sourced from pin AD3N . If the channel
select bits equal 6 or 7 or if the external temperature mode is chosen, then the internal reference is
chosen regardless of IREFEN setting . If an external reference is desired, see 6.1.6 Using an External
Reference for more information . When the internal reference is used, the FS can be set to factory pro-
grammed settings, 1 .225V or 5 .5V . The appropriate FS is chosen by the ADGAIN bit described in the
configuration section .

6 ADCONT
ADC Continuous Sequence Mode . Setting this bit to 1 enables the continuous sequence mode .
Clearing this bit to 0 disables the continuous sequence mode . In single sequence mode, the ADC
conversion stops after the end of the sequence .

5 ADDAIE
ADC Data Available Interrupt Enable . Setting the ADDAIE bit to 1 enable an interrupt to be generated
to the CPU when the ADDAI = 1 . Clearing this bit to 0 disables an interrupt from generating when
ADDAI = 1 .

4 — Reserved . The user should not write to this bit .

3:0 ADACQ[3:0]
ADC Acquisition Extension Bits [3:0] . These bits are used to extend sample acquisition time if the
corresponding ADC acquisition extension is enabled (ADACQEN = 1) . See 6.1.3 ADC Conversion
Time for details .

� � Maxim�Integrated� 6-7

MAX31782 User’s Guide

Revision 0; 8/11

6.2.2�ADC�Status�Register�(ADST)
Register Address: M2[06h]

6.2.3�ADC�Address�Register�(ADADDR)
Register Address: M2[07h]

*Unrestricted read, but can only be written to when ADCONV = 0.

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Name — — — — ADDAT3 ADDAT2 ADDAT1 ADDAT0 — ADCONV ADDAI ADCFG ADIDX3 ADIDX2 ADIDX1 ADIDX0

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Access r r r r r r r r r rw rw rw rw rw rw rw

BIT NAME DESCRIPTION

15:12 — Reserved . The user should not write to these bits .

11:8 ADDAT[3:0]
ADC Data Available Address Bits [3:0] . These bits indicate the memory location last written to by the
ADC . These bits are read-only .

7 — Reserved . The user should not write to this bit .

6 ADCONV

ADC Start Conversion . Set this bit to 1 start the conversion process . This bit remains set until the
conversion process is finished . In single sequence mode, this bit is cleared to 0 when the conversion
sequence is finished . In continuous sequence mode, this bit remains set until the ADC conversion is
stopped . To stop ADC conversion at any time, write 0 to this bit . The ADC stops acquiring data after
the current conversion is finished, or, if the ADC is waiting during extended acquisition time, the ADC
stops immediately . This bit is cleared to 0 on entry of stop mode .

5 ADDAI

ADC Data Available Interrupt Flag . This bit is set to 1 when the condition matching ADDAINV bits
are met . The ADC memory location last written by the ADC is available at ADDAT . This flag causes
an interrupt if the ADDAIE is enabled . This bit is cleared by software writing a 0 or when software
changes ADCONV bit from 0 to 1 .

4 ADCFG
ADC Conversion Configuration Register Select . This bit selects the target register pointed to by ADIDX .
When ADCFG is set to 1, the ADIDX[2:0] configuration register is selected for read/write access . When
ADCFG is cleared to 0, the ADIDX[3:0] data buffer location is selected for reading only .

3:0 ADIDX[3:0]

ADC Register Index Bits [3:0] . These bits together with ADCFG select the source/destination for
ADDATA access . When ADCFG = 0, ADIDX[3:0] are used to address one of the 16 data buffers .
When ADCFG = 1, only ADIDX[2:0] are used to address one of the eight configuration registers . This
register value is auto-incremented on successive access (read/write) of ADDATA register .

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Name — — — — ADBADD3 ADBADD2 ADBADD1 ADBADD0 — ADSTART2 ADSTART1 ADSTART0 — ADEND2 ADEND1 ADEND0

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Access r r r r rw* rw* rw* rw* r rw* rw* rw* r rw* rw* rw*

BIT NAME DESCRIPTION

15:12 — Reserved . The user should not write to these bits .

11:8 ADBADD[3:0]
ADC Data Buffer Address Bits [3:0] . These bits indicate the first ADC acquisition data memory loca-
tion . These bits can be written to only when ADCONV = 0 .

7 — Reserved . The user should not write to this bit .

6:4 ADSTART[2:0]
ADC Conversion Configuration Start Address Bits [2:0] . These bits select the first conversion configu-
ration register .

3 — Reserved . The user should not write to this bit .

2:0 ADEND[2:0]
ADC Conversion Configuration Ending Address Bits [2:0] . These bits select the last conversion con-
figuration register . This register is inclusive when defining the sequence .

� � Maxim�Integrated� 6-8

MAX31782 User’s Guide

Revision 0; 8/11

6.2.4�ADC�Data�and�Configuration�Register�(ADDATA)
Register Address: M2[09h]

The ADDATA register is used to set up the ADC sequence configurations and also to read the results of the ADC con-
versions . If the ADST .ADCFG bit is set to 1, writing to ADDATA writes to one of the configuration registers . If ADST .
ADCFG is set to 0, reading from ADDATA reads one of the conversion results .

6.2.4.1�ADC�Configuration�Register�(ADDATA�when�ADCFG�=�1)
When ADCFG = 1, writing to the ADDATA register writes to one of the configuration registers . The configuration register
written to is selected by the ADIDX[2:0] bits . The ADIDX[2:0] bits automatically increment after a write to ADDATA . This
allows consecutive writes of ADDATA to set up consecutive configuration registers . The configuration registers are reset
to 0 on all forms of reset and are not writable by the user .

*When ADCFG = 1, unrestricted read, but can only be written to when ADCONV = 0.

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Name — — — — — — — — EXTEMP ADGAIN ADACQEN ADALIGN ADDIFF ADCH2 ADCH1 ADCH0

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Access r r r r r r r r rw* rw* rw* rw* rw* rw* rw* rw*

BIT NAME DESCRIPTION

15:8 — Reserved . The user should not write to these bits .

7 EXTEMP

External Temperature Mode: Setting this bit to one chooses external temperature sensing operation .
If this bit is set to zero, the ADC operates in normal voltage conversion mode for ADCH = 0–5 . For
ADCH = 6 or 7, the internal temperature is measured regardless of the setting of this bit . For external
temperature measurement, the ADC does the following:
•	 A current source generated on the chip is directed to one of six positive ADC channel pins

(AD0P–AD5P) based on channel select bits described in the configuration section .
•	 The current passing through the external diode is expected to return on the negative input pins

(AD0N–AD5N) of the corresponding channel .
•	 The voltage across the positive and negative inputs of the channel is then scaled appropriately to

produce a temperature sample with a slope of 2 .4mV/NC .
•	 The internal reference is chosen during both temperature measurement modes, external and

internal, regardless of IREFEN bit value .
•	 The slope of the temperature can additionally be controlled by up to +2% in increments of ~0 .25NC

to accommodate the variance in ideality factor of the diode being used . The slope comes
preprogrammed with a 2N3904 used as a reference . The control register is at ETS (M1[16]) SFR .

•	 The slope of the internal temperature sensor is not user adjustable and set at the factory .
•	 The measured temperature is reported in the ADDATA register .

6 ADGAIN

ADC Reference Select . This bit selects the ADC scale factor .

IREFEN ADGAIN ADCSCALE

1 0 ADCG1

1 1 ADCG5

0 X ADCG1

5 ADACQEN
ADC Acquisition Extension Enable . Setting this bit to 1 enables additional acquisition time to be insert-
ed prior to this conversion . Clearing this bit to 0 disables the extended acquisition time .

4 ADALIGN

ADC Data Alignment Select . This bit selects the ADC data alignment mode . Setting this bit to 1
returns ADC data left-aligned in ADDATA [15:3] with ADDATA[2:0] zero padded . Clearing this bit to
0 returns ADC data in right-aligned format in ADDATA[12:0] with ADDATA[15:13] sign-extended by
ADDATA[12] .

� � Maxim�Integrated� 6-9

MAX31782 User’s Guide

Revision 0; 8/11

6.2.4.2�ADC�Data�Buffer�(ADDATA�when�ADCFG�=�0)
When ADCFG = 0, reading from the ADDATA register reads the ADC results stored in one of the 16 data buffers . The
data buffer to read from is selected with the ADIDX[3:0] bits . Reading this register returns the 13-bit (12-bits plus a sign
bit) ADC conversion data plus selected data buffer memory . The ADIDX[3:0] bits automatically increment after a read of
ADDATA . This allows multiple reads of ADDATA to access consecutive data buffer locations without needing to change
ADIDX . The data buffers are reset to 0 on all forms of reset and are not writable by the user .

The data that is read from the ADC buffer can be from either a temperature or voltage conversion . Also, the data can
be right-aligned or left-aligned . Table 6-3 shows the returned bit weighting for each type of conversion .

Table�6-3.�ADC�Data�Bit�Weighting

3 ADDIFF

ADC Differential Mode Select . In voltage mode, this bit selects the ADC conversion mode . When
this bit is set to 1, the ADC conversion is in differential mode . When this bit is cleared to 0, the ADC
conversion is performed in single-ended mode . During single-ended mode, the sample is measured
between AD0P–AD5P and ground . If AD0P–AD5P transitions below 0, negative numbers are reported .
No clamping of data is performed for negative inputs . The firmware needs to clamp the negative read-
ing . In temperature mode, ADDIFF is a “don’t care .” The part automatically selects differential mode
for temperature measurement .

2:0 ADCH[2:0]

ADC Channel Select . These bits select the input channel source for the current ADC conversion .

ADCH[2:0] ADDIFF�=�0 ADDIFF�=�1

000 AD0P AD0P–AD0N

001 AD1P AD1P–AD1N

010 AD2P AD2P–AD2N

011 AD3P AD3P–AD3N

100 AD4P AD4P–AD4N

101 AD5P AD5P–AD5N

11X Internal Temperature Mode

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Temperature Right-
Aligned

S S S S 28 27 26 25 24 23 22 21 20 2-1 2-2 2-3

Temperature Left-
Aligned

S 28 27 26 25 24 23 22 21 20 2-1 2-2 2-3 0 0 0

Voltage Right-Aligned S S S S 211 210 29 28 27 26 25 24 23 22 21 20

Voltage Left-Aligned S 211 210 29 28 27 26 25 24 23 22 21 20 0 0 0

� �Maxim�Integrated�� � 6-10

MAX31782 User’s Guide

Revision 0; 8/11

6.2.5�External�Temperature�Slope�Control�Register�(ETS)
Register Address: M1[16h]

The ETS register changes the slope of external temperature measurements to compensate for changes in diode
ideality factor . The MAX31782 is factory calibrated to work with a diode-connected 2N3904 NPN transistor with an
ideality factor of 1 .004 . Table 6-4 shows the possible settings for the ETS register and the corresponding ideality
factor . Table 6-4 also shows the change in the reported temperature for each ETS register setting when the external
diodes are at room temperature . The ETS register should only be set to the values shown in Table 6-4 .

Table�6-4.�ETS�Register�Settings

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Name — — — — — — — — ETS7 ETS6 ETS5 ETS4 ETS3 ETS2 ETS1 ETS0

Reset 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0

Access r r r r r r r r rw rw rw rw rw rw rw rw

ETS IDEALITY�FACTOR TEMPERATURE�DELTA�FROM�0x7C�(°C)

0x00 1 .0244 -7 .37

0x04 1 .0232 -7 .01

0x0C 1 .0220 -6 .63

0x10 1 .0208 -6 .36

0x14 1 .0196 -5 .96

0x1C 1 .0184 -5 .62

0x20 1 .0172 -5 .43

0x24 1 .0160 -5 .08

0x2C 1 .0148 -4 .71

0x30 1 .0136 -4 .51

0x34 1 .0124 -3 .97

0x3C 1 .0112 -3 .7

0x40 1 .0100 -3 .65

0x44 1 .0088 -3 .23

0x4C 1 .0076 -2 .86

0x50 1 .0064 -2 .65

0x54 1 .0052 -2 .23

0x5C 1 .0040 -1 .96

0x60 1 .0028 -1 .75

0x64 1 .0016 -1 .3

0x6C 1 .0004 -0 .97

0x70 0 .9992 -0 .67

0x74 0 .9980 -0 .33

0x7C 0 .9968 0

� � Maxim�Integrated� 6-11

MAX31782 User’s Guide

Revision 0; 8/11

6.2.6�ADC�External�Temperature�Offset�Register�(TOEX)
Register Address: M1[1Ah]

The TOEX register contains the temperature offset for the external temperature measurements . The default value of
this register is -273 (Kelvin to Celsius) plus any offset that was calibrated out at the factory . This offset is applied to the
raw data from the ADC prior to the value being stored into the data buffer . The final result stored in the data buffer is
raw_adc + TOEX, where raw_adc is the converted temperature in Kelvin .

6.2.7�ADC�Voltage�Offset�Register�(ADVOFF)
Register Address: M1[19h]

The ADVOFF register contains the ADC voltage offset for the voltage mode . This is calibrated at the factory to cancel out
any offset that can be present in the ADC . The user can add or subtract any offset that they desire by altering this register .
This offset is applied to the raw data from the ADC prior to the value being stored into the data buffer . The value stored in
the data buffer is raw_adc + ADVOFF, where raw_adc is the converted voltage without any offset compensation .

6.2.8�ADC�Voltage�Scale�Trim�Registers�(ADCG1�and�ADCG5)
ADCG1 Register Address: M1[17h]

ADCG5 Register Address: M1[18h]

The ADCG1 and ADCG5 registers are used to adjust the ADC full scale by changing the gain applied to the ADC
reference (internal or external) . These registers are set at the factory to work with the internal reference . The internal
reference voltage is set to 1 .215V and cannot be changed by the user . When using the internal reference, ADCG1 and
ADCG5 are factory calibrated to produce ADC full scale levels of 1 .225V and 5 .5V respectably .

The ADCG1 and ADCG5 registers are provided so the ADC full scale can be adjusted to meet the needs of the targeted
application . Only bits ADCG[14:0] are used to adjust the full scale level . Some basic settings are the following:

• ADCG = 2000h: The full scale is 1x the reference level .

• ADCG = 1000h: The full scale is 2x the reference level .

• ADCG = 0800h: The full scale is 4x the reference level .

It is not recommended that a gain other than 1x, 2x, or 4x be used . This is because the weightings of the ADCG[10:0]
bits are nonlinear . An application specific program needs to be developed that tests the ADC full scale for each pos-
sible code setting until the proper full scale is achieved .

s = special, initial value is dependent on trim settings

s = special, initial value is dependent on trim settings

s = special, initial value is dependent on trim settings

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Name S S S S 28 27 26 25 24 23 22 21 20 2-1 2-2 2-3

Reset s s s s s s s s s s s s s s s s

Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Name S S S S 211 210 29 28 27 26 25 24 23 22 21 20

Reset s s s s s s s s s s s s s s s s

Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Name Don’t Care ADCG14 ADCG13 ADCG12 ADCG11 ADCG10 ADCG9 ADCG8 ADCG7 ADCG6 ADCG5 ADCG4 ADCG3 ADCG2 ADCG1 ADCG0

Reset s s s s s s s s s s s s s s s s

Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

� � Maxim�Integrated� 6-12

MAX31782 User’s Guide

Revision 0; 8/11

6.3�ADC�Code�Examples

6.3.1�One�Sequence�of�Four�Temperature�and�Voltage�Conversions
ADCN_bit.IREFEN	=	1;	 //enable	the	internal	reference

ADCN_bit.ADCONT	=	0;	 //run	a	single	conversion	sequence

ADST_bit.ADCFG	=	1;		 //set	ADDATA	as	ADCFG

ADST_bit.ADIDX	=	0;		 //ADIDX	=	0,	set	to	ADCFG[0]

ADDATA	=	0x08;		 	 //ADCFG[0]:	Differential	voltage	CH0,	1.225V	FS,	Right	Aligned

ADDATA	=	0x41;		 	 //ADCFG[1]:	Single	ended	voltage	CH1,	5.5V	FS,	Right	Aligned

ADDATA	=	0x85;		 	 //ADCFG[2]:	External	temperature	CH5,	right	aligned

ADDATA	=	0x86;		 	 //ADCFG[3]:	Internal	temperature,	CH6,	right	aligned

ADADDR_bit.ADSTART	=	0;	 //start	sequence	with	ADCFG[0]

ADADDR_bit.ADEND	=	3;		 //end	sequence	with	ADCFG[3]

ADST_bit.ADCONV	=	1;	 //start	the	conversions

while(ADST_bit.ADCONV)		 //wait	for	conversions	to	complete

;

ADST_bit.ADCFG	=	0;	 //set	ADDATA	to	data	buffer

ADST_bit.ADIDX	=	0;	 //set	ADDATA	to	data	buffer[0]

ch0_volt	=	ADDATA;		 //read	and	store	ch0	voltage	to	variable

ch1_volt	=	ADDATA;		 //read	and	store	ch1	voltage	to	variable

ch5_temp	=	ADDATA;		 //read	and	store	ch5	temperature	to	variable

int_temp	=	ADDATA;		 //read	and	store	internal	temperature	to	variable

� � Maxim�Integrated� 6-13

MAX31782 User’s Guide

Revision 0; 8/11

6.3.2�Continuous�Conversion�of�16�Samples
ADCN_bit.IREFEN	=	1;	 //enable	the	internal	reference

ADCN_bit.ADDAINV	=	3;		 //set	the	interrupt	flag	after	16	conversions

ADCN_bit.ADCONT	=	1;		 //run	continuous	conversions

ADST_bit.ADCFG	=	1;	 //set	ADDATA	as	ADCFG

ADST_bit.ADIDX	=	0;		 //ADIDX	=	0,	set	to	ADCFG[0]

ADDATA	=	0x08;	 	 //ADCFG[0]:	Differential	voltage,	ch0,	1.225V	FS,	Right	Aligned

ADADDR	=	0x0000;		 	 //ADSTART=0,	ADEND=0,	sequence	is	only	ADCFG[0]

ADST_bit.ADDAI	=	0;	 //clear	the	interrupt	flag

ADST_bit.ADCONV	=	1;		 //start	the	conversion

while(!ADST_bit.ADDAI)		 //wait	for	16	conversions	to	complete

;

ADST_bit.ADCONV	=	0;		 //stop	the	converter

ADST_bit.ADDAI	=	0;		 //clear	the	interrupt	flag

ADST_bit.ADCFG	=	0;		 //set	ADDATA	to	data	buffer

ADST_bit.ADIDX	=	0;		 //set	ADDATA	to	data	buffer[0]

for(i=0;	i<16;	i++)

ADC[i]	=	ADDATA;		 //read	all	16	conversions

� � Maxim�Integrated�� � 7-1

MAX31782 User’s Guide

Revision 0; 8/11

SECTION 7: I2C-COMPATIBLE SLAVE INTERFACE

7 .1 Detailed Description . .7-2

7 .1 .1 Default Operation .7-2

7 .1 .2 Slave Address .7-3

7 .1 .3 I2C START Detection .7-3

7 .1 .4 I2C STOP Detection .7-3

7 .1 .5 Slave Address Matching .7-3

7 .1 .6 Transmitting Data .7-4

7 .1 .7 Receiving Data . .7-5

7 .1 .8 Clock Stretching . .7-6

7 .1 .9 SMBus Timeout .7-7

7 .1 .10 Resetting the I2C Slave Controller .7-7

7 .1 .11 Operation as a Master .7-7

7 .1 .12 GPIO . .7-7

7 .2 I2C Slave Controller Register Descriptions .7-8

7 .2 .1 I2C Slave Control Register (I2CCN_S) . .7-8

7 .2 .2 I2C Slave Status Register (I2CST_S) .7-9

7 .2 .3 I2C Slave Interrupt Enable Register (I2CIE_S) . .7-10

7 .2 .4 I2C Slave Address Register (I2CSLA_S) .7-11

7 .2 .5 I2C Slave Data Buffer Register (I2CBUF_S) .7-11

7 .2 .6 SMBus Mode Selection Register (SMBUS) .7-12

7 .2 .7 I2C Slave Clock Control Register (I2CCK_S) . .7-12

7 .2 .8 I2C Slave Timeout Register (I2CTO_S) .7-12

LIST OF FIGURES

Figure 7-1 . Slave I2C Flow .7-2

Figure 7-2 . Slave I2C Data Flow .7-4

Figure 7-3 . Slave I2C Clock Stretching .7-6

This section contains the following information:

� � Maxim�Integrated�� � 7-2

MAX31782 User’s Guide

Revision 0; 8/11

SECTION 7: I2C-COMPATIBLE SLAVE INTERFACE
The MAX31782 provides an I2C-compatible slave controller that allows the MAX31782 to communicate with a host
device . This controller can also operate as an SMBus slave . Also designed into the I2C slave controller is the ability to
bootload the MAX31782 with new user flash memory . The I2C slave interface can be set up to provide system interrupts
after each I2C event . Figure 7-1 shows the basic operation flow of the I2C slave controller . The blocks in Figure 7-1 that
are shaded are shown in more detail in Figure 7-2 .

Figure 7-1. Slave I2C Flow

7.1�Detailed�Description

7.1.1�Default�Operation
The I2C slave controller is enabled (I2CCN_S .I2CEN=1) by default . As long as the I2C slave controller is enabled, the
MAX31782 I2C bootloader can operate . This allows bootloading of blank devices without any setup of the I2C slave con-
troller . Prior to the I2C slave controller being used for normal data communication, some software setup is required . This
setup includes setting an I2C slave address and telling the slave controller which I2C events should generate interrupts .

DETECT START
I2CSRI = 1
I2CBUS = 1

I2CBUSY = 1

RECEIVE
SLAVE

ADDRESS

DETECT STOP
I2CSPI = 1
I2CBUS = 0

RECEIVE
DATA

TRANSMIT
DATA

I2CAMI = 1?

Y

N

Y

I2CNACKI

STOP?

R/W BIT
I2CMODE

0

0

1

1

N

Y

STOP?
N

�Maxim�Integrated� 7-3

MAX31782 User’s Guide

Revision 0; 8/11

7.1.2�Slave�Address
Prior to communication, an I2C slave address may need to be selected . The I2C slave controller normally responds to
two slave addresses . The I2C bootloader uses address 34h . This bootloader address cannot be changed and should
not be used as the device slave address for normal communication . The second slave address is the address used
for communication with the host . This slave address is set using the I2CSLA_S register . The address contained in the
I2CSLA_S register is the address without the R/W bit . For example, the default I2C slave address is 36h, meaning the
I2CSLA_S register contains 1Bh . If an address other than 36h is desired, the I2CSLA_S register can be programmed
with this new address .

The I2C slave controller can also be programmed to respond to a third address, the general call address, which is 00h .
This feature can be enabled by setting the I2CCN_S .I2CGCEN bit to 1 .

7.1.3�I2C�START�Detection
The I2C slave controller always monitors the I2C bus for an I2C START, which is a high-to-low transition on SDA while
SCL is held high . If an I2C START (or restart) condition is detected, the I2C slave sets the I2CSRI bit in the I2CST_S
register, which can cause an interrupt if enabled . The detection of a START brings the I2C controller out of its idle state .
Following a START, the I2C controller begins to monitor data on the I2C bus and the I2CBUSY bit is set to 1 . The I2CBUS
bit is also set to 1 indicate that the I2C bus is currently busy .

7.1.4�I2C�STOP�Detection
The I2C slave controller also always montors the I2C bus for an I2C STOP, which is a low-to-high transition on SDA
while SCL is held high . If an I2C STOP condition is detected, the I2C slave controller sets the I2CSPI bit in the I2CST_S
register, which can cause an interrupt if enabled . The I2CBUS bit is cleared to 0 following a STOP to indicate that the
I2C bus is no longer busy .

7.1.5�Slave�Address�Matching
Following an I2C START or restart, the I2C slave controller knows that the next byte of data transmit by the host should
be the slave address . The I2C slave automatically monitors for the slave address without any software interaction
required . The I2C slave controller compares the first 7 bits received to the slave address programmed into I2CSLA_S .

After receiving the first 8 bits of data following a START, the I2C controller compares the first 7 bits to the value pro-
grammed into the I2CSLA_S register . If the received slave address matches I2CSLA_S, the I2C slave controller does
the following steps, as illustrated in Figure 7-2 .

• Transmits an ACK or NACK on the 9th clock based upon the setting of the I2CCN_S .I2CACK bit .

• Sets the I2CCN_S .I2CMODE bit with the value of the received R/W bit . This bit can be used by software to determine
if the I2C slave controller would be asked to receive or transmit data .

• Sets the I2CST_S .I2CAMI bit to indicate that a slave address match was made . The setting of this bit can generate
an interrupt if enabled .

• Clears the I2CBUSY flag .

Upon completion of the slave data byte (7 bits of slave address + R/W bit + ACK/NACK), the I2C slave controller enters
one of three states:

• Data Transmit: The slave address matched and the R/W bit was a 1 . The host is now expecting to clock data from
the MAX31782 . The MAX31782 retains control of the SDA line so data can be transmit to the host .

• Data Receive: The slave address matched and the R/W bit was a 0 . The host wants to write data to the MAX31782 .
After the ACK/NACK bit, the MAX31782 releases SDA and prepares to receive a byte of data .

• Wait for START/STOP: The received slave address did not match I2CSLA_S . The controller enters idle state and
waits for the next START condition or STOP condition .

� � Maxim�Integrated� 7-4

MAX31782 User’s Guide

Revision 0; 8/11

7.1.6�Transmitting�Data
The MAX31782 I2C slave controller enters into data transmission mode after receiving a matching slave address with
the R/W bit set to a 1 . The steps of data transmission are shown in Figure 7-2 . Data transmission is started by software
loading a byte of data into the I2CBUF_S register . Loading I2CBUF_S causes the I2CBUSY bit in I2CST_S to be set .
Once set, a write to I2CBUF_S is ignored . The first bit of data (most significant bit) is shifted to SDA when SCL is low .
Each of the next 7 bits is then shifted following high-to-low transitions of SCL .

Following the 8th data (least significant bit) being shifted to SDA, the SDA line is released by the MAX31782 slave
controller . This allows the host to signal an ACK or NACK during the 9th clock cycle . The MAX31782 I2C slave control-
ler samples the acknowledge bit following the rising 9th SCL rising edge . After the acknowledge bit is sampled, the
MAX31782 I2C slave controller performs the following tasks:

• Sets the I2CST_S .I2CTXI flag to indicate that the I2C slave controller transmit a complete byte . This can generate an
interrupt if enabled .

• Sets or clears the I2CST_S .I2CNACKI flag to reflect the received acknowledge bit . The setting of I2CNACKI can
generate and interrupt if enabled .

Figure 7-2. Slave I2C Data Flow

DETECT START
I2CSRI = 1
I2CBUS = 1

I2CBUSY = 1

RECEIVING SLAVE
ADDRESS

RECEIVE
Addr[6:0] + R/W

TRANSMIT
I2CACK

MATCH
I2CSLA_S?

Y

N

I2CAMI = 1

I2CBUSY = 0

SET I2CMODE
ACCORDING TO

R/W

TRANSMITTING
BYTE

I2CBUSY = 1

I2CROI = 1

WRITE TO
I2CBUF_S

RECEIVING
BYTE

DETECT FIRST SCL
RISING EDGE

RECEIVE
ACKNOWLEDGE

8 BITS
TRANSMIT?

Y

N

N

I2CTXI = 1
I2CBUSY = 0

TRANSMIT SHIFT
REGISTER BYTE,

MSB FIRST

I2CNACKI =
ACKNOWLEDGE

I2CBUSY = 1

SEND
I2CACK

I2CBUSY = 0

RECEIVE A BIT INTO
SHIFT REGISTER,

MSB FIRST

LOAD SHIFT
REGISTER INTO

I2CBUF_S
I2CRXI = 1

8 BITS
RECEIVED?

Y

RECEIVER
FULL?

Y

N

� � Maxim�Integrated� 7-5

MAX31782 User’s Guide

Revision 0; 8/11

• Clears the I2CST_S .I2CBUSY flag to indicate that the I2C slave controller is not actively participating in the transfer
of data .

The detection of an ACK by the MAX31782 I2C slave controller indicates that the host wants to receive another byte of
data . The I2C slave controller maintains control of SDA following the ACK . The next byte to transmit needs to be loaded
into I2CBUF_S prior to the host starting to clock this next byte . However, data cannot be loaded into I2CBUF_S prior to
I2CBUSY being cleared, which indicates that all the bits in I2CBUF_S have been shifted onto SDA .

The detection of a NACK indicates that the host does not want to receive any additional data . The MAX31782 I2C slave
controller releases control of SDA following the reception of the NACK bit . After the NACK, the slave controller enters
idle state and monitors the I2C bus for a START or STOP condition .

7.1.7�Receiving�Data
The MAX31782 I2C slave controller enters data reception mode after receiving a matching slave address with the R/W
bit set to a 0 . The steps of data reception are shown in Figure 7-2 . The reception process begins when the I2C slave
controller detects the first rising edge of SCL . This first rising edge sets I2CBUSY and also clock the first bit (MSB) of
data from SDA into the data shift register .

When receiving data, the MAX31782 I2C slave controller uses a double buffer consisting of the I2CBUF_S register and
the shift register . This allows the I2C module to continue receiving data while the previous data byte is being processed .
After a complete byte (8 bits) of data are received, the I2C slave controller attempts to copy the received data from
the shift register to I2CBUF_S . There are two possible results from the I2C slave controllers attempt to copy the shift
register to I2CBUF_S .

1) If I2CBUF_S is empty, the I2C slave controller copies the data from the shift register into I2CBUF_S . The I2CRXI flag
is set to indicate a received byte is ready to be read . The setting of I2CRXI can generate an interrupt if enabled .

2) If I2CBUF_S is full, the data in the shift register cannot be copied into I2CBUF_S . This causes a receive overrun
condition . The receive overrun flag, I2CROI, is set, which can generate an interrupt if enabled . I2CBUF_S is full if it
was not read by software following the reception of a previous byte .

After receiving a byte of data and the I2CRXI flag being set, it is up to software to read I2CBUF_S prior to a second
byte being received . Reading the I2CBUF_S register returns the received data and also clears I2CBUF_S . As long as
the previous byte of data is read from I2CBUF_S before the next byte has completed, receive overrun does not occur .

When in receive overrun and the I2CROI bit is set, any new incoming data is not shifted into the I2C slave controller . The
controller responds to any bytes received with a NACK regardless of the setting of the I2CACK bit . The receive overrun
condition and the I2CROI flag can only be cleared by software reading the first byte received from I2CBUF_S . When
the receive overrun condition is cleared, the I2C slave controller copies the second byte that was received into I2CBUF,
and again set I2CRXI to indicate a byte of data was received . The I2C slave controller resumes its normal operation in
the next SCL clock cycle after I2CROI is cleared . To avoid losing any data, I2CROI must to be cleared prior to the first
SCL clock rising edge of the next byte .

After the 9th bit of any byte has been received, the I2CBUSY bit is cleared to indicate that the controller is no longer
participating in a data transaction . The value in I2CACK is transmitted to the host on the 9th SCL clock cycle, assuming
the I2C slave controller is not operating in receive overrun .

� � Maxim�Integrated� 7-6

MAX31782 User’s Guide

Revision 0; 8/11

7.1.8�Clock�Stretching
If a slave device cannot receive or transmit another complete byte of data, it can hold SCL low, forcing the master to
wait . Data transfer continues when the slave is ready for another byte of data and releases SCL .

The I2C slave controller can hold SCL low at the completion of each byte being transferred . If the I2C clock stretch
enable bit (I2CSTREN) is set to a 1, the I2C controller holds SCL low after the clock pulse defined by the I2C clock
stretch select bit (I2CSTRS) . If I2CSTRS = 0, the I2C controller holds SCL low after the falling edge of the 9th clock pulse .
Otherwise, if I2CSTRS = 1, the I2C controller holds SCL low after the falling edge of the 8th clock pulse . When the I2C
controller is holding SCL low, the I2C clock stretch interrupt bit (I2CSTRI) is set . The I2C slave controller holds SCL low
until I2CSTRI is cleared to 0 by software . Figure 7-3 shows the I2C slave controller clock stretching after receiving the
9th clock of a byte .

Normally when the I2C slave controller is receiving data, the value of I2CACK is output after the 8th clock falling edge .
However, if clock stretching is enabled after the 8th clock, the I2C slave controller continually outputs the I2CACK
bit until clock stretching is released by software . This allows software time to inspect data that was received before
responding with an appropriate acknowledge bit .

Most applications that use the MAX31782’s I2C slave controller need to use clock stretching . Generally the application
is set to only respond to interrupts from the I2C slave controller, therefore it does not have to continuously poll the slave
I2C controller . After each byte transfer is complete, the I2C slave controller needs to either read the received byte from
I2CBUF_S or write the next byte to transmit to I2CBUF_S . Without using clock stretching, the host can begin clocking the
next byte before the I2C slave controller is prepared . A few conditions that can require clock stretching to be enabled
are listed below .

• When a slave address match is made and the R/W bit is set, the I2C slave controller is expected to transmit a byte
of data to the host . This byte of data needs to be written to I2CBUF_S after the 8th clock of the slave address (when
I2CBUSY is cleared) and prior to the first clock of the data byte . If clock stretching is not used, software may not be
able to write the correct data into I2CBUF_S prior to the first clock of the data byte .

• Following the transmission of one byte of data to the host, another byte may be requested by the host sending an
ACK bit . The I2C slave controller has between the 9th clock of the first data byte (when I2CBUSY is cleared) and the
first clock of the second byte to write to I2CBUF_S . If clock stretching is not used, software may not be able to write
the next byte to I2CBUF_S prior to the first clock of the second byte .

• After a byte is received by the I2C slave controller it may be necessary to stretch the clock . This allows software time
to read the byte from I2CBUF_S and do any data processing . Without using clock stretching, there is a chance that
a second byte could be sent prior to the software reading the first byte, creating a receive overrun condition . Any
additional data that is sent after this time is lost .

Figure 7-3. Slave I2C Clock Stretching

SCL

SDA

LAST 2 SCL CYCLES OF 1ST BYTE FIRST 2 SCL CYCLES OF 2ND BYTEFIRMWARE CAN PROCESS I2C DATA WHILE SCL IS HELD LOW

CLOCK STRETCHING ENABLED
AFTER THE 9TH SCL CLOCK

ACK

SLAVE HOLDS SCL LOW
I2CSTRI = 1

I2CSTRI SET TO 0
SLAVE RELEASES SCL

NORMALLY THE
MASTER OUTPUTS

SCL HIGH HERE
MASTER CONTINUES

CLOCKING SCL.

8 9 1 2

� � Maxim�Integrated� � 7-7

MAX31782 User’s Guide

Revision 0; 8/11

7.1.9�SMBus�Timeout
The I2C slave controller can also be used for SMBus or PMBus™ communication . To maintain SMBus compatibility, a
30ms timer is implemented by the I2C slave controller . The purpose of this timer is to issue a timeout interrupt when SCL
is low for greater than 30ms . The timer only starts when none of the following conditions are true:

1) The I2C slave controller is in the idle state and there is no communications on the I2C bus . The timer should not
generate interrupts if the I2C slave controller is in the idle state regardless of how long SCL is low .

2) The SMBus mode bit is not set . This ensures the SMBus timeout functionality does not interfere with normal I2C
functionality .

3) SCL is high . The timer is inactive whenever SCL is high . The timer resets when it is inactive .

4) The I2C slave controller is disabled or used as a master I2C controller . The timer is not needed in this case .

The following description explains when the SMBus timer starts, assuming that all other START conditions are met .
When the MAX31782’s I2C slave controller is idle and it receives a START, it exits the idle state and the timer becomes
active (starts counting) any time SCL goes low . If following the START the master addresses a different slave on the
bus, the I2C slave controller returns to the idle state and the timer is reset and becomes inactive . In short, as soon as
SCL goes low following a START, the SMBus timer becomes active until the I2C slave controller re-enters idle state .

When a timeout occurs, the timeout bit (I2CTOI) is set, which can generate an interrupt if enabled . If a timeout occurs,
it may be necessary to reset the I2C slave controller . See 7.1.10 Resetting the I2C Slave Controller for more details .

SMBus mode selection is controlled by the SMBUS register . When the slave SMBus mode operation bit (SMB_MOD_S)
is set to 1, the SMBus timeout functionality is enabled .

7.1.10�Resetting�the�I2C�Slave�Controller
The I2C slave controller can be reset by setting the RESET_S bit in the SMBUS register . After a delay of at least one
system clock, this bit needs to be cleared to 0 by software and the reset is complete . A reset forces the I2C slave
controller to release both SDA and SCL if they are being held low by the I2C slave controller . The reset also turns off
the I2C slave controller (I2CEN = 0), resets all the I2C registers, and resets the internal state machine of the I2C slave
controller . Following a reset, the I2C slave controller must be reinitialized, including enabled (I2CEN = 1) before it can
be used again .

7.1.11�Operation�as�a�Master
The MAX31782 contains two I2C interfaces, the slave (SDA and SCL) and master (MSDA and MSCL) . These are two
totally separate blocks within the MAX31782 . However, both of the blocks are identical . Because of this, it is possible
to operate the slave as a master and also operate the master as a slave .

To operate the slave (SDA and SCL) as a master I2C interface, the I2CMST bit in I2CCN_S needs to be set to a 1 .
When the slave is operating as a master, it uses the same registers (I2CCN_S, I2CST_S, etc) that it uses for slave
operation . However, the bits in these registers have different functionality, as described in SECTION 8: I2C-Compatible
Master Interface . The SMBUS .RESET_S bit can still be used to reset this interface (SDA and SCL) when operating as a
master . The SMBUS .SMB_MOD_S bit has no effect when the interface is operating in master mode . See SECTION 8:
I2C-Compatible Master Interface for details on initializing and using a master I2C interface .

Note:�When�the�I2C�slave�interface�is�changed�to�operate�in�master�mode,�the�I2C�bootloader�is�not�available.

7.1.12�GPIO
When the I2C slave controller is disabled (I2CCN_S .I2CEN = 0), the SDA and SCL pins can be used as GPIO pins . The
SDA pin is mapped to GPIO port P6 .7 and SCL is mapped to GPIO port P6 .6 . When used as GPIO outputs, the SDA
and SCL pins can only be open-drain outputs . See SECTION 11: General-Purpose Input/Output (GPIO) Pins for more
information on using SDA and SCL as GPIO pins .

Note:�When�the�I2C�slave�interface�is�disabled,�the�I2C�bootloader�is�not�available.

PMBus is a trademark of SMIF, Inc.

� � Maxim�Integrated� 7-8

MAX31782 User’s Guide

Revision 0; 8/11

7.2�I2C�Slave�Controller�Register�Descriptions
The following registers are used to control the I2C slave interface, which uses the SDA and SCL pins . These registers
control the I2C slave interface if it is operating as either a slave or master . The bit descriptions detail how to use these
registers when operating in slave mode . When operating in master mode, some of the bits and registers have different
functionality . See SECTION 8: I2C-Compatible Master Interface section for more information on how to control the I2C
slave interface when it is operating as a master .

7.2.1�I2C�Slave�Control�Register�(I2CCN�S)
Address: M2[0Ch]

*Unrestricted read. Unrestricted write access when I2CBUSY = 0. Writes to I2CEN are disabled when I2CBUSY = 1.

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Name — — — — — — I2CSTREN I2CGCEN I2CSTOP I2CSTART I2CACK I2CSTRS — I2CMODE I2CMST I2CEN

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Access r r r r r r rw* rw* r r rw* rw* r r r rw*

BIT NAME DESCRIPTION

15:10 — Reserved . The user should not write to these bits .

9 I2CSTREN
I2C Slave Clock Stretch Enable . Setting this bit to 1 stretches the clock (holds SCL low) at the end of
the clock cycle specified in I2CSTRS . Clearing this bit disables clock stretching .

8 I2CGCEN
I2C Slave General Call Enable . Setting this bit to 1 enables the I2C to respond to a general call
address (address = 0000 0000) . Clearing this bit to 0 disables the response to general call address .

7 I2CSTOP This bit has no function when operating in slave mode .

6 I2CSTART This bit has no function when operating in slave mode .

5 I2CACK

I2C Slave Data Acknowledge Bit . This bit selects the acknowledge bit returned by the I2C controller
while acting as a receiver . Setting this bit to 1 generates a NACK (leaving SDA high) . Clearing the
I2CACK bit to 0 generates an ACK (pulling SDA low) during the acknowledgement cycle . This bit
retains its value unless changed by software or hardware .

4 I2CSTRS
I2C Slave Clock Stretch Select . Setting this bit to 1 enables clock stretching after the falling edge of
the 8th clock cycle . Clearing this bit to 0 enables clock stretching after the falling edge of the 9th clock
cycle . This bit has no effect when clock stretching is disabled (I2CSTREN = 0) .

3 — Reserved . The user should not write to this bit .

2 I2CMODE I2C Slave Transfer Mode Select . This bit reflects the actual R/W bit value in the current I2C transfer
and is set by hardware . Software writing to this bit is ignored .

1 I2CMST
I2C Master Mode Enable . Setting this bit to 1 enables I2C master functionality on the SDA and SCL
pins . See SECTION 8: I2C-Compatible Master Interface for more details . Setting this bit to 0 enables
I2C slave functionality .

0 I2CEN
I2C Slave Enable . This bit enables the I2C slave function . When set to 1, I2C slave communication is
enabled . When cleared to 0, the I2C function is disabled .

� � Maxim�Integrated� 7-9

MAX31782 User’s Guide

Revision 0; 8/11

*Set by hardware only.

7.2.2�I2C�Slave�Status�Register�(I2CST�S)
Address: M2[01h]

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Name I2CBUS I2CBUSY — — I2CSPI I2CSCL I2CROI I2CGCI I2CNACKI — I2CAMI I2CTOI I2CSTRI I2CRXI I2CTXI I2CSRI

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Access r* r* r r rw r* rw rw rw* r rw rw rw* rw* rw rw

BIT NAME DESCRIPTION

15 I2CBUS
I2C Slave Bus Busy . This bit is set to 1 when a START/repeated START condition is detected and cleared
to 0 when the STOP condition is detected . This bit is reset to 0 on all forms of reset or when I2CEN = 0 .
This bit is controlled by hardware and is read only .

14 I2CBUSY
I2C Slave Busy . This bit is used to indicate the current status of the I2C module . The I2CBUSY is set to 1
when the I2C controller is actively participating in a transaction . This bit is controlled by hardware and is
read only .

13:12 — Reserved . The user should not write to these bits .

11 I2CSPI
I2C Slave STOP Interrupt Flag . This bit is set to 1 when a STOP condition is detected . This bit must be
cleared to 0 by software once set . Setting this bit to 1 by software causes an interrupt if enabled .

10 I2CSCL
I2C Slave SCL Status . This bit reflects the logic state of SCL signal . This bit is set to 1 when SCL is at a
logic-high (1), and cleared to 0 when SCL is at a logic-low (0) . This bit is controlled by hardware and is
read-only .

9 I2CROI
I2C Slave Receiver Overrun Flag . This bit indicates a receive overrun when set to 1 . This bit is set to 1 if
the receiver has received 2 bytes since the last CPU read of I2CBUF_S . This bit can only be cleared to 0
by software reading the I2CBUF_S . Setting this bit to 1 by software causes an interrupt if enabled .

8 I2CGCI
I2C Slave General Call Interrupt Flag . This bit is set to 1 when the general call is enabled (I2CGCEN = 1)
and the general call address (00h) is received . This bit must be cleared to 0 by software once set . Setting
this bit to 1 by software causes an interrupt if enabled .

7 I2CNACKI
I2C Slave NACK Interrupt Flag . This bit is set by hardware to either a 1 if a NACK was received from
the host or a 0 if an ACK was received from the host . The setting of this bit to a 1 causes an interrupt if
enabled . This bit can be cleared to 0 by software once set .

6 — Reserved . The user should not write to these bits .

5 I2CAMI
I2C Slave Address Match Interrupt Flag . This bit is set to 1 when the I2C controller receives an address
that matches the contents of the slave address register (I2CSLA_S) . This bit must be cleared to 0 by soft-
ware once set . Setting this bit to 1 by software causes an interrupt if enabled .

4 I2CTOI
I2C Slave Timeout Interrupt Flag . This bit is set to 1 if SMBus timeout is enabled and SCL is low longer than
30ms . This bit must be cleared to 0 by software once set . Setting this to 1 causes an interrupt if enabled .

3 I2CSTRI

I2C Slave Clock Stretch Interrupt Flag . This bit indicates that the I2C slave controller is operating with
clock stretching enabled and is currently holding the SCL clock signal low . The I2C controller releases
SCL after this bit has been cleared to 0 . This bit must be cleared to 0 by software once set . This bit is set
by hardware only .

2 I2CRXI
I2C Slave Receive Ready Interrupt Flag . This bit indicates that a data byte has been received in the I2C
buffer . This bit must be cleared by software once set . This bit is set by hardware only .

1 I2CTXI

I2C Slave Transmit Complete Interrupt Flag . This bit indicates that an address or a data byte has been
successfully shifted out and the I2C controller has received an acknowledgment from the receiver (NACK
or ACK) . This bit must be cleared by software once set . Setting this bit to 1 by software causes an inter-
rupt if enabled .

0 I2CSRI
I2C Slave START Interrupt Flag . This bit is set to 1 when a START condition (or restart) is detected . This bit
must be cleared to 0 by software once set . Setting this bit to 1 by software causes an interrupt if enabled .

� � Maxim�Integrated� 7-10

MAX31782 User’s Guide

Revision 0; 8/11

7.2.3�I2C�Slave�Interrupt�Enable�Register�(I2CIE�S)
Address: M2[02h]

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Name — — — — I2CSPIE — I2CROIE I2CGCIE I2CNACKIE — I2CAMIE I2CTOIE I2CSTRIE I2CRXIE I2CTXIE I2CSRIE

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Access r r r r rw r rw rw rw r rw rw rw rw rw rw

BIT NAME DESCRIPTION

15:12 — Reserved . The user should not write to these bits .

11 I2CSPIE
I2C Slave STOP Interrupt Enable . Setting this bit to 1 causes an interrupt to the CPU when a STOP condi-
tion is detected (I2CSPI = 1) . Clearing this bit to 0 disables the STOP detection interrupt .

10 — Reserved . The user should not write to this bit .

9 I2CROIE
I2C Slave Receiver Overrun Interrupt Enable . Setting this bit to 1 causes an interrupt to the CPU when a
receiver overrun condition is detected (I2CROI = 1) . Clearing this bit to 0 disables the receiver overrun
detection interrupt .

8 I2CGCIE
I2C Slave General Call Interrupt Enable . Setting this bit to 1 causes an interrupt to the CPU when a gen-
eral call is detected (I2CGCI = 1) . Clearing this bit to 0 disables the general call interrupt .

7 I2CNACKIE
I2C Slave NACK Interrupt Enable . Setting this bit to 1 causes an interrupt to the CPU when a NACK is
detected (I2CNACKI = 1) . Clearing this bit to 0 disables the NACK detection interrupt .

6 — Reserved . The user should not write to this bit .

5 I2CAMIE
I2C Slave Address Match Interrupt Enable . Setting this bit to 1 causes an interrupt to the CPU when the
I2C controller detects an address that matches the I2CSLA_S value (I2CAMI = 1) . Clearing this bit to 0
disables the address match interrupt .

4 I2CTOIE
I2C Slave Timeout Interrupt Enable . Setting this bit to 1 causes an interrupt to the CPU when an SMBus
timeout condition is detected (I2CTOI = 1) . Clearing this bit to 0 disables the timeout interrupt .

3 I2CSTRIE
I2C Slave Clock Stretch Interrupt Enable . Setting this bit to 1 generates an interrupt to the CPU when the
clock stretch interrupt flag is set (I2CSTRI = 1) . Clearing this bit disables the clock stretch interrupt .

2 I2CRXIE
I2C Slave Receive Ready Interrupt Enable . Setting this bit to 1 causes an interrupt to the CPU when the
receive ready interrupt flag is set (I2CRXI = 1) . Clearing this bit to 0 disables the receive ready interrupt .

1 I2CTXIE
I2C Slave Transmit Complete Interrupt Enable . Setting this bit to 1 causes an interrupt to the CPU when
the transmit complete interrupt flag is set (I2CTXI = 1) . Clearing this bit to 0 disables the transmit com-
plete interrupt .

0 I2CSRIE
I2C Slave START Interrupt Enable . Setting this bit to 1 causes an interrupt to the CPU when a START
condition is detected (I2CSRI = 1) . Clearing this bit to 0 disables the START detection interrupt .

� Maxim�Integrated 7-11

MAX31782 User’s Guide

Revision 0; 8/11

7.2.4�I2C�Slave�Address�Register�(I2CSLA�S)
Address: M2[0Fh]

7.2.5�I2C�Slave�Data�Buffer�Register�(I2CBUF�S)
Address: M2[00h]

*Unrestricted read access. This register can be written to only when I2CBUSY = 0.

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Name — — — — — — — — — A6 A5 A4 A3 A2 A1 A0

Reset 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1

Access r r r R r r r r r rw rw rw rw rw rw rw

BIT NAME DESCRIPTION

15:7 — Reserved . The user should not write to these bits .

6:0 A[6:0]

These address bits contain the address of the I2C slave interface . When a match to this address is
detected, the I2C controller automatically acknowledges the host with the I2CACK bit value and the
I2CAMI flag is set to 1 . An interrupt is generated if enabled . The address in I2CSLA is the device slave
address without the R/W bit . For example, the default value of I2CSLA_S is 1Bh, which produces a
device slave address of 36h .

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Name — — — — — — — — D7 D6 D5 D4 D3 D2 D1 D0

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Access r r r R r r r r rw* rw* rw* rw* rw* rw* rw* rw*

BIT NAME DESCRIPTION

15:8 — Reserved . The user should not write to these bits .

7:0 D[7:0]
Data for I2C transfer is read from or written to this location . The I2C transmit and receive buffers are
separate, but both are addressed at this location .

� � Maxim�Integrated�� � 7-12

MAX31782 User’s Guide

Revision 0; 8/11

7.2.6�SMBus�Mode�Selection�Register�(SMBUS)
Address: M3[04h]

This register contains bits that are used for both the I2C slave interface (SDA and SCL) and the I2C master interface
(MSDA and MSCL) . For operation of the slave interface, only the slave bits should be used .

7.2.7�I2C�Slave�Clock�Control�Register�(I2CCK�S)
Address: M2[0Dh]

This register has no function when operating in slave mode .

7.2.8�I2C�Slave�Timeout�Register�(I2CTO�S)
Address: M2[0Eh]

This register has no function when operating in slave mode .

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Name — — — — — — — — — — — — RESET_S RESET_M SMB_MOD_S SMB_MOD_M

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Access r r r r r r r r r r r r rw rw rw rw

BIT NAME DESCRIPTION

15:4 — Reserved . The user should not write to these bits .

3 RESET_S
I2C Slave Reset Bit . This bit can be used by the software to unconditionally reset and disable the I2C
slave interface . After at least one system clock cycle, this bit must be cleared by software . After this
bit is toggled, all the relevant I2C slave registers need to be reinitialized .

2 RESET_M This bit does not affect the slave I2C interface (SDA and SCL) .

1 SMB_MOD_S
Slave SMBus Mode Operation . When this bit is set to a 1, SMBus timeout functionality is enabled for
the I2C slave interface . When this bit is cleared to 0, the SMBus timeout functionality is disabled . See
7.1.9 SMBus Timeout for more details .

0 SMB_MOD_M This bit does not affect the slave I2C interface (SDA and SCL) .

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Name I2CCKH7 I2CCKH6 I2CCKH5 I2CCKH4 I2CCKH3 I2CCKH2 I2CCKH1 I2CCKH0 I2CCKL7 I2CCKL6 I2CCKL5 I2CCKL4 I2CCKL3 I2CCKL2 I2CCKL1 I2CCKL0

Reset 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 1

Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 7 6 5 4 3 2 1 0

Name I2CTO7 I2CTO6 I2CTO5 I2CTO4 I2CTO3 I2CTO2 I2CTO1 I2CTO0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

� Maxim�Integrated� 8-1

MAX31782 User’s Guide

Revision 0; 8/11

SECTION 8: I2C-COMPATIBLE MASTER INTERFACE

8 .1 Detailed Description . .8-2

8 .1 .1 Description of Master I2C Interface .8-2

8 .1 .2 Default Operation .8-2

8 .1 .3 I2C Clock Generation .8-2

8 .1 .4 Timeout . .8-3

8 .1 .5 Generating a START .8-4

8 .1 .6 Generating a STOP .8-5

8 .1 .7 Transmitting a Slave Address .8-5

8 .1 .8 Transmitting Data .8-6

8 .1 .9 Receiving Data . .8-7

8 .1 .10 I2C Master Clock Stretching .8-7

8 .1 .11 Resetting the I2C Master Controller .8-8

8 .1 .12 Operation as a Slave .8-8

8 .1 .13 GPIO . .8-8

8 .2 I2C Master Controller Register Descriptions .8-9

8 .2 .1 I2C Master Control Register (I2CCN_M) .8-9

8 .2 .2 I2C Master Status Register (I2CST_M) .8-10

8 .2 .3 I2C Master Interrupt Enable Register (I2CIE_M) .8-11

8 .2 .4 I2C Master Data Buffer Register (I2CBUF_M) .8-11

8 .2 .5 I2C Master Clock Control Register (I2CCK_M) .8-12

8 .2 .6 I2C Master Timeout Register (I2CTO_M) .8-12

8 .2 .7 I2C Master Address Register (I2CSLA_M) .8-12

8 .2 .8 SMBus Mode Selection Register (SMBUS) .8-13

LIST OF FIGURES

Figure 8-1 . I2C Clock Generation .8-2

Figure 8-2 . Master I2C Clock Generation During Slave Clock Stretching . .8-3

Figure 8-3 . Master I2C Generated START and STOP .8-4

Figure 8-4 . Slave Address Format .8-5

Figure 8-5 . Master I2C Data Flowchart .8-6

This section contains the following information:

� � Maxim�Integrated� 8-2

MAX31782 User’s Guide

Revision 0; 8/11

SECTION 8: I2C-COMPATIBLE MASTER INTERFACE
The MAX31782 provides an I2C-compatible master controller that allows the MAX31782 to communicate with a slave
device . The I2C master interface can be setup to provide system interrupts after each I2C event .

8.1�Detailed�Description

8.1.1�Description�of�Master�I2C�Interface
The master I2C interface uses the MSDA and MSCL pins . These pins are the master I2C controller’s connection to the
SDA and SCL pins of an I2C bus . In addition to driving these pins, the I2C master port also senses the state of both
MSDA and MSCL . This allows the I2C master port to offer bus error detection and allows a slave device to clock stretch .
The MSDA and MSCL pins are open-drain output pins and require external pullup resistors to achieve a high logic level .

Unless explicitly stated, all references to SDA and SCL in this section refer to the SDA and SCL lines of the I2C bus, not
the MAX31782’s I2C slave interface SDA and SCL pins .

8.1.2�Default�Operation
The I2C master controller is disabled by default . The I2C master controller is enabled by setting the I2CEN and I2CMST
bits in the I2CCN_M register to a 1 . Prior to the I2C master controller being used for communication, some software
setup is required . This setup includes setting the clock rate, timeout period, and which I2C events should generate
interrupts . The MAX31782 master I2C controller is not intended to be used on an I2C bus that has multiple masters
connected to the bus .

8.1.3�I2C�Clock�Generation
In an I2C system, the master is responsible for generating the SCL signal . The MAX31782 I2C master controller provides
complete control over the clock rate and duty cycle . The I2C master controller generates SCL from the system clock .
The bit rate is controlled by the I2C clock control register (I2CCK_M) .

The high period of SCL clock is defined by the high byte of the I2C clock control register (I2CCKH), whereas the
low period of SCL is defined by the low byte (I2CCKL) . The minimum clock high period is three system clocks while
the minimum low period has to be at least five system clock periods . The I2C clock characteristics can be defined by
the following equations:

• SCL Low Time = System Clock Period x (I2CCKL[7:0] + 1)

• SCL High Time = System Clock Period x (I2CCKH[7:0] + 1)

• I2C Clock Rate = System Clock Frequency/(I2CCLK[7:0] + I2CCKH[7:0] + 2)

One feature of the master I2C controller is that it also monitors SCL while the clock is being output . This allows the control-
ler to ensure that the SCL level is at the desired level prior to beginning the count for SCL Low or High Time . Figure 8-1
illustrates the SCL sampling performed by the master I2C controller . When SCL is released by the master I2C controller,

Figure 8-1. I2C Clock Generation

I2CCKHI2CCKL
SCL

RELEASED

VIH_MIN

VIL_MAX
SCL

I2CCKH

� Maxim�Integrated�� � 8-3

MAX31782 User’s Guide

Revision 0; 8/11

there is a rise time that is determined by the capacitive loading and pullup resistance on the SCL line . When the control-
ler senses the SCL line has reached a high logic level, the count for SCL High Time begins . The same is true for a falling
edge . The SCL Low Time only begins after the controller senses the SCL line at a low logic level .

Figure 8-1 also illustrates that the calculated I2C clock period will not be exactly accurate because the rise and fall time
of SCL is not taken into consideration . The actual clock period will be the period set by the I2CCK_M register plus any
rise and fall time .

The master I2C controller’s ability to monitor the state of SCL allows the master to operate with slave devices that clock
stretch . A slave device may clock stretch, or hold SCL low, while it is busy or processing data . The master I2C controller
will always release SCL after holding it low for the SCL Low Time duration . By monitoring the state of SCL, the master I2C
controller realizes that SCL has not been released and does not begin the SCL High Time count . Only after the master
controller detects a high state on SCL will it begin the I2CCKH count . This is illustrated in Figure 8-2 .

8.1.4�Timeout
The master I2C controller has a programmable timeout function that allows the controller to recover from a bus error . The
timeout period is determined by the setting of the I2C master timeout register (I2CTO_M) using the following equation:

Timeout Period = I2C Bit Rate x (I2CTO[7:0]+1)

where I2C Bit Rate is determined by the setting of the I2CCK_M register . The timeout can be disabled by clearing the
I2CTO_M register to 0 . The I2C timeout timer starts counting:

• When the I2CSTART bit is set to 1 . The I2C controller monitors the status of SDA and SCL until it can generate a
START condition . If the cont ro l le r has to wait longer than the period specified in the timeout register, the I2C
controller concludes that there is a bus error and sets the I2CTOI flag .

 If the I2C controller has started a transfer (after the f irst bit rising edge), it waits for the current byte transfer to
finish (after the 9th bit (acknowledge) has been transmit) before generating the START condition . In this case, the
timeout timer starts counting after the end of the 9th bit low time .

• After the master I2C controller attempts to generate a STOP condition . If a STOP is not detected (I2CSPI = 1) during
the timeout period, the I2CTOI flag is set .

 If the I2C controller has started a transfer (after the f irst bit rising edge), it waits for the current byte transfer to
finish (after the 9th bit (acknowledge) has been transmit) before generating the STOP condition . In this case, the
timeout timer starts counting after the end of the 9th bit low time .

• Whenever SCL goes low . If the SCL line is low for a period longer than specified in the timeout register, the I2C
c o n t r o l l e r concludes that there is a bus error and sets the I2CTOI flag .

For all these cases, when the I2C timeout period is reached, the I2CTOI flag is set . The setting of I2CTOI can generate an
interrupt if enabled . If the master I2C controller is in the process of transferring data when the timeout occurs, the control-
ler aborts the current transfer and clears the I2CBUSY flag . The I2CBUS flag continues to be set until a STOP condition is
detected or I2CEN is set to 0 .

Figure 8-2. Master I2C Clock Generation During Slave Clock Stretching

SCL

THE MASTER
RELEASES SCL, BUT

THE SLAVE IS HOLDING
SCL LOW.

THE MASTER STARTS
ITS I2CCKH COUNT.

THE SLAVE
RELEASES SCL.

� �Maxim�Integrated�� � 8-4

MAX31782 User’s Guide

Revision 0; 8/11

8.1.5�Generating�a�START
To initiate a data transfer, the I2C master controller must first issue a START command . The master I2C controller’s flow
when attempting to issue a START command is shown in Figure 8-3 . A START command is generated by setting the
I2CSTART bit to 1 . The I2C controller monitors the status of SDA and SCL until it can generate a START condition . If
the cont ro l le r has to wait longer than the period specified in the timeout register, the I2C controller concludes that
there is a bus error and sets the I2CTOI flag .

If the bus is not busy, the I2C master controller attempts to generate a START . Because the SDA line is feedback into
the device, when the master generates a START, it can also detect the START condition . When a start condition is
detected, the I2C START interrupt flag (I2CSRI) will be set and an interrupt will be generated if enabled . The I2CBUS
bit will be set to indicate that the I2C bus is now in use and the I2CSTART bit will be cleared .

Figure 8-3. Master I2C Generated START and STOP

I2CSTART = 1

START GENERATION

I2CBUSY = 1

N

Y YN

N

N

Y

REPEATED
START?

GENERATE START

I2CSRI = 1
I2CBUS = 1

I2CTOI = 1

Y Y

N

I2CTOI = 1

I2CSTART = 0
I2CBUSY = 0

I2CSTOP = 0
I2CBUSY = 0

Y

Y

N

I2CBUS = 1 TIMEOUT?

STOP GENERATION

I2CSTOP = 1

I2CBUSY = 1

TRANSFERRING
BYTE?

N

GENERATE STOP

TRANSFERRING
BYTE?

START
DETECTED?

I2CSPI = 1
I2CBUS = 0

Y

NSTOP
DETECTED?

TIMEOUT?

Y

TIMEOUT?

� � Maxim�Integrated�� � 8-5

MAX31782 User’s Guide

Revision 0; 8/11

When the I2CSTART bit is set to a 1, the I2C controller starts its timeout timer if enabled (I2CTO_M ≠ 0) . If the timer
expires before the START can be generated, t h e I2C timeout interrupt flag (I2CTOI) will be set and an interrupt
generated if enabled . If a timeout occurs, the I2C master controller will reset to an idle state and the I2CSTART bit will
be cleared .

If the I2CSTART bit is set when the I2C controller is in the middle of a byte transfer (after the first bit rising edge), the
controller will wait for the current byte transfer to finish (after the 9th bit) before generating the START condition . In this
case, the timeout timer will not start counting until after the end of the 9th bit low time .

8.1.6�Generating�a�STOP
To end an I2C transfer, a STOP must be transmit . A STOP is generated by setting the I2CSTOP bit . The master I2C
controller’s flow when attempting to issue a STOP command is shown in Figure 8-3 .

If the I2CSTOP bit is set when the I2C controller is in the middle of a byte transfer (after the first bit rising edge), it will wait
for the current byte transfer to finish (after the 9th bit) before generating the STOP condition .

Because the SDA line is feedback into the device, when the master generates a STOP, it will also detect the STOP
condition . When a STOP condition is detected, the I2C STOP interrupt flag (I2CSPI) will be set and an interrupt will
be generated enabled . The I2CBUS bit will be cleared to indicate that the I2C bus is now idle and the I2CSTOP bit will
be cleared .

When the master I2C controller attempts to generate the STOP condition, it will also start the timeout timer if this feature
is enabled . If a timeout is generated before the STOP condition is detected, a timeout will occur . When a timeout occurs,
the I2CTOI bit will be set, which can generate an interrupt if enabled, and the I2CSTOP bit will also be cleared to 0 .

8.1.7�Transmitting�a�Slave�Address
The first byte after an I2C start or restart condition is the slave address byte . This byte, which is transmit by the master,
contains seven bits of slave address followed by the R/W bit . The transmission of the slave address begins with writing
the address to I2CBUF_M .

The slave address written to I2CBUF_M is a seven-bit address that does not contain the R/W bit . Figure 8-4 shows the
format for slave address 36h . The address bits A[6:0], which is the slave address excluding the R/W bit is written to
I2CBUF_M[6:0] . For example, to transmit slave address 36h, I2CBUF_M must be set to 1Bh . The I2CMODE bit will be
insert into the R/W bit when the slave address is transmit .

Figure 8-4. Slave Address Format

After the slave address has been written to I2CBUF_M, the I2C master controller will set the I2CBUSY bit to indicate the
controller is actively participating in a transaction . The seven bits in I2CBUF_M[6:0] will be transmit on SDA . The data
for the 8th bit transmit, which is the R/W bit, is the value of the I2CMODE bit . The I2C master then issues the 9th clock,
which is for the acknowledge bit, and reads SDA for an acknowledgment from a slave device . The I2C master controller
then performs the following steps . This is illustrated in Figure 8-5 .

• Set the I2CNACKI bit with the value of the received acknowledgement .

• The I2CTXI bit will then be set to indicate a byte was transmit .

• Clear the I2CBUSY flag .

0 0110110

A6 A0A1A2A3A4A5 R/W

SLAVE ADDRESS 36h SHOWN.

� � Maxim�Integrated� 8-6

MAX31782 User’s Guide

Revision 0; 8/11

Upon transmitting the slave data byte (7 bits of slave address + R/W bit + acknowledge), the I2C master controller will
enter one of the three states .

• Data Transmit: The I2CMODE (R/W) bit was set to a 0, indicating that the master will be writing data to a slave device .
The MAX31782 will retain control of the SDA line .

• Data Receive: The I2CMODE (R/W) bit was set to a 1, indicating that the master will be receiving data from a slave .
The MAX31782 releases control of SDA to allow a slave device to output data . The MAX31782 master I2C controller
automatically begins clocking bytes of data from the slave .

• The slave address was NACKed . The master I2C controller will retain control of SDA and is able to transmit data .

8.1.8�Transmitting�Data
The MAX31782 I2C master controller enters into data transmission mode after transmitting a slave address with the
R/W bit (I2CMODE) set to a 0 . The steps of data transmission are shown in Figure 8-5 . Data transmission is started by
software loading a byte of data into the I2CBUF_M register . Loading I2CBUF_M causes the I2CBUSY bit to be set . Once
set, writes to I2CBUF_M will be ignored . The first bit of data (most significant bit) will be shifted to SDA when SCL is low .
Each of the next seven bits will then be shifted following high to low transitions of SCL .

Figure 8-5. Master I2C Data Flowchart

WRITE TO
I2CBUF_M

TRANSMITTING
SLAVE ADDRESS

I2CBUSY = 1

Y

N N8 BITS
TRANSMIT?

TRANSMIT
I2CBUF_M[6:0] +

I2CMODE

RECEIVE
ACKNOWLEDGE

I2CNACKI =
ACKNOWLEDGE

I2CTXI = 1
I2CBUSY = 0

I2CNACKI =
ACKNOWLEDGE

I2CTXI = 1
I2CBUSY = 0

I2CROI = 1
Y

WRITE TO
I2CBUF_M

TRANSMITTING
BYTE

I2CBUSY = 1

TRANSMIT SHIFT
REGISTER BYTE,

MSB FIRST

RECEIVE
ACKNOWLEDGE

Y

8 BITS
RECEIVED?

RECEIVER
FULL?

N

I2CBUSY = 1

SEND
I2CACK

I2CBUSY = 0

RECEIVE A BIT INTO
SHIFT REGISTER,

MSB FIRST

LOAD SHIFT
REGISTER INTO

I2CBUF_M
I2CRXI = 1

FIRST SCL RISING
EDGE GENERATED

RECEIVING
BYTE

�Maxim�Integrated�� � 8-7

MAX31782 User’s Guide

Revision 0; 8/11

Following the 8th bit of data (least significant bit) being shifted to SDA, the SDA line will be released by the MAX31782
master controller . This allows the slave to signal an ACK or NACK during the 9th clock cycle . The MAX31782 I2C master
controller samples the acknowledge bit following the 9th SCL rising edge . After the acknowledge bit is sampled, the
MAX31782 I2C master controller will perform the following tasks:

• Set or clear the I2CNACKI flag to reflect the received acknowledge bit . The setting of I2CNACKI can generate an
interrupt if enabled .

• Set the I2CTXI flag to indicate that the I2C master controller transmit a complete byte . This can generate an interrupt
if enabled .

• Clear the I2CBUSY flag to indicate that the I2C master controller is not actively participating in the transfer of data .

8.1.9�Receiving�Data
The MAX31782 I2C master controller enters data reception mode after transmitting a slave address with the R/W bit
(I2CMODE) set to a 1 . The steps of data reception are shown in Figure 8-5 . After transmitting the slave address, the
master controller will switch to receiver mode and automatically begin outputting SCL clock pulses and shifting in data
from SDA .

When receiving data, the MAX31782 I2C master controller uses a double buffer consisting of the I2CBUF_M register
and the shift register . This allows the I2C module to continue receiving data while the previous data byte is being
processed . When a full byte of data (8 bits) has been received by the I2C master controller, the master must send an
acknowledgement to the slave . This occurs during the 9th clock cycle when the value in I2CACK is transmit to the slave .

After a complete byte (8 bits) of data are received, the I2C master controller will attempt to copy the received data from
the shift register to I2CBUF_M . There are two possible results from the I2C master controller’s attempt to copy the shift
register to I2CBUF_M .

1) If I2CBUF_M is empty, the I2C master controller will copy the data from the shift register into I2CBUF_M . The I2CRXI
flag will be set to indicate a received byte is ready to be read . The setting of I2CRXI can generate an interrupt if
enabled .

2) If I2CBUF_M is full, the data in the shift register cannot be copied into I2CBUF_M . This causes a receive overrun
condition . The receive overrun flag, I2CROI, will be set which can generate an interrupt if enabled . I2CBUF_M will
be full if it was not read by software following the reception of a previous byte .

After receiving a byte of data and the I2CRXI flag being set, it is up to software to read I2CBUF_M prior to a second
byte being received . Reading the I2CBUF_M register returns the received data and also clears I2CBUF_M . As long as
the previous byte of data is read from I2CBUF_M before the next byte has completed, receive overrun will not occur .

When receive overrun is detected and I2CROI bit is set, the MAX31782 master I2C controller will stop outputting SCL
clocks and not clock the acknowledge bit until the receive overrun condition is cleared . The receive overrun condition
and the I2CROI flag can only be cleared by software reading the first byte received from I2CBUF_M . When the receive
overrun condition is cleared, the I2C master controller will copy the second byte that was received into I2CBUF_M,
and again set I2CRXI to indicate a byte of data was received . The I2C master controller will resume clocking SCL after
satisfying SCL low time requirements .

The master I2C controller will continue to automatically clock bytes of data until any of the following conditions occur .

1) A receive overrun condition occurs .

2) A STOP command is issued (I2CSTOP = 1) prior to the master I2C controller beginning to clock a new byte .

3) The master I2C controller has clock stretching enabled and the clock is currently being held low by the master .

8.1.10�I2C�Master�Clock�Stretching
The master I2C controller is capable of clock stretching at the end of each transfer cycle . Clock stretching is when SCL
is held low . If the I2C clock stretch enable bit (I2CSTREN) is set to a 1, the I2C controller holds SCL low after the clock
pulse defined by the I2C clock stretch select bit (I2CSTRS) . If I2CSTRS = 0, the I2C controller holds SCL low after the
falling edge of the 9th clock pulse . If I2CSTRS = 1, the I2C controller holds SCL low after the falling edge of the 8th
clock pulse . When the I2C controller is holding SCL low, the I2C clock stretch interrupt flag (I2CSTRI) is set, which can
generate an interrupt if enabled . The I2C slave controller holds SCL low until I2CSTRI is cleared to 0 by software .

� � Maxim�Integrated�� � 8-8

MAX31782 User’s Guide

Revision 0; 8/11

If clock stretching is enabled after the 8th clock pulse, the master I2C controller will continue outputting the value of the
I2CACK bit until clock stretching is released by clearing I2CSTRI . This allows software time to examine the data that
was received prior to sending an ACK or NACK to the slave . The continuous output of I2CACK will occur even if the
master I2C controller is transmitting data . In this mode, the slave should be sending the acknowledgement . To allow
the slave to send the proper acknowledgement, the I2CACK bit should be set to a 1, which prompts the master I2C
controller to release SDA .

The master I2C controller may need to use clock stretching when receiving data from a slave . When receiving data,
the master I2C controller automatically generates clock pulses . Without using clock stretching, this automatic clock
generation is only halted when a STOP command is issued or a receive overrun occurs . If clock stretching is enabled,
software can control when each byte of data is clocked from the slave device .

8.1.11�Resetting�the�I2C�Master�Controller
The I2C master controller can be reset by setting the RESET_M bit in the SMBUS register . After a delay of at least one
system clock, this bit needs to be cleared by software to complete the reset . A reset will force the master I2C controller
to release both MSDA and MSCL if they are being held low by the I2C master controller . A reset will also turn off the I2C
master controller (I2CEN = 0), reset all of the master I2C registers, and reset the I2C master controller’s internal state
machine . Following a reset, the I2C master controller must be reinitialized before it can be used again .

After a reset, the master I2C controller will be in a known state but the slave devices may be in an unknown state . It
is recommended that the master I2C controller attempts to reset the slave devices prior to beginning communication .
A reset of slave devices can be performed by outputting at least nine clock pulses on the MSCL line while MSDA is
high . This easiest way to achieve this is to use MSDA and MSCL as GPIO pins (see SECTION 11: General-Purpose
Input/Output (GPIO) Pins) while the master I2C controller is disabled (I2CEN = 0) . After the nine clock pulses, a STOP
command should be generated . This can be done either using GPIO, or by enabling the master I2C controller and
generating a STOP .

8.1.12�Operation�as�a�Slave
The MAX31782 contains two I2C interfaces, the master (MSDA and MSCL) and slave (MAX31782 SDA and SCL pins) .
These are two totally separate blocks within the MAX31782 . However, both of the blocks are identical . Because of this,
it is possible to operate the master as a slave and also operate the slave as a master .

To operate the master (MSDA and MSCL) as a slave I2C interface, the I2CMST bit in I2CCN_M needs to be set to a
0 . When the master is operating as a slave, it will use the same registers (I2CCN_M, I2CST_M, etc) that it uses for
master operation . However, the bits in these registers will have different functionality, as described in SECTION 7:
I2C-Compatible Slave Interface . The SMBUS .RESET_M bit can still be used to reset this interface (MSDA and MSCL)
when operating as a slave . The SMBUS .SMB_MOD_M bit only affects the interface when it is operating as a slave . See
SECTION 7: I2C-Compatible Slave Interface for details on initializing and using a slave I2C interface .

8.1.13�GPIO
When the I2C master controller is disabled (I2CEN = 0), the MSDA and MSCL pins can be used as GPIO pins . The
MSDA pin is mapped to GPIO port P2 .7 and MSCL is mapped to GPIO port P2 .6 . When used as GPIO outputs, the
MSDA and MSCL pins are only capable of being open-drain outputs . See SECTION 11: General-Purpose Input/Output
(GPIO) Pins for more information on using MSDA and MSCL as GPIO pins .

� � Maxim�Integrated�� � 8-9

MAX31782 User’s Guide

Revision 0; 8/11

8.2�I2C�Master�Controller�Register�Descriptions
Following are the registers that are used to control the I2C master interface, which is the MSDA and MSCL pins . These
registers are used to control the I2C master interface if it is operating as either a master or slave . The bit descriptions
below detail how to use these registers when operating in master mode . When operating in slave mode, some of the
bits and registers have different functionality . See SECTION 7: I2C-Compatible Slave Interface for more information on
how to control the I2C master interface when it is operating as a slave .

8.2.1�I2C�Master�Control�Register�(I2CCN�M)
Address: M1[0Ch]

*Unrestricted read. Unrestricted write access when I2CBUSY = 0. Writes to I2CEN are disabled when I2CBUSY = 1.

Note: The I2CSTART and I2CSTOP bits are mutually exclusive. If both bits are set at the same time, it is considered an invalid
operation and the I2C controller ignores the request and resets both bits to 0. Setting the I2CSTART bit to 1 while I2CSTOP = 1 is
an invalid operation and is ignored, leaving the I2CSTART bit cleared to 0.

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Name — — — — — — I2CSTREN I2CGCEN I2CSTOP I2CSTART I2CACK I2CSTRS — I2CMODE I2CMST I2CEN

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Access r r r r r r rw rw rw rw rw rw r rw* rw* rw*

BIT NAME DESCRIPTION

15:10 — Reserved . The user should not write to these bits .

9 I2CSTREN
I2C Master Clock Stretch Enable . Setting this bit to 1 stretches the clock (hold SCL low) at the end of
the clock cycle specified by I2CSTRS . Clearing this bit disables clock stretching .

8 I2CGCEN This bit has no function when operating in master mode .

7 I2CSTOP

I2C STOP Enable . Setting this bit to 1 generates a STOP condition . This bit is automatically cleared
to 0 after the STOP condition has been generated . The setting of I2CSTOP starts the timeout timer if
enabled . If the timeout timer expires before the STOP condition is generated, the I2CTOI flag is set,
which can generate an interrupt if enabled . A timeout also clears the I2CSTOP bit .

6 I2CSTART

I2C START Enable . Setting this bit to 1 generates a START or repeated START condition . This bit is
automatically cleared to 0 after the START condition has been generated . The setting of I2CSTART
starts the timeout timer if enabled . If the timeout timer expires before the START condition is gener-
ated, the I2CTOI flag is set, which can generate an interrupt if enabled . A timeout also clears the
I2CSTART bit .

5 I2CACK

I2C Master Data Acknowledge Bit . This bit selects the acknowledge bit returned by the master I2C
controller while acting as a receiver . Setting this bit to 1 generates a NACK (leaving SDA high) .
Clearing the I2CACK bit to 0 generates an ACK (pulling SDA low) during the acknowledgement
cycle . This bit retains its value unless changed by software or hardware .

4 I2CSTRS
I2C Master Clock Stretch Select . Setting this bit to 1 enables clock stretching after the falling edge
of the 8th clock cycle . Clearing this bit to 0 enables clock stretching after the falling edge of the 9th
clock cycle . This bit has no effect when clock stretching is disabled (I2CSTREN = 0) .

3 — Reserved . The user should not write to this bit .

2 I2CMODE
I2C Master Transfer Mode Select . When the I2CMODE bit is set to 1, the master is operating in
receiver mode (reading from slave) . When the I2CMODE bit is cleared to 0, the master is operating in
transmitter mode (writing to slave) .

1 I2CMST
I2C Master Mode Enable . Setting this bit to 1 enables I2C master functionality on the MSDA and
MSCL pins . Setting this bit to 0 enables I2C slave functionality . See SECTION 7: I2C-Compatible
Slave Interface section for more details .

0 I2CEN
I2C Enable . This bit enables the I2C master interface . When set to 1, the I2C master interface is
enabled . When cleared to 0, the I2C function is disabled .

� �Maxim�Integrated� 8-10

MAX31782 User’s Guide

Revision 0; 8/11

8.2.2�I2C�Master�Status�Register�(I2CST�M)
Address: M1[01h]

*Set by hardware only.

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Name I2CBUS I2CBUSY — — I2CSPI I2CSCL I2CROI I2CGCI I2CNACKI — I2CAMI I2CTOI I2CSTRI I2CRXI I2CTXI I2CSRI

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Access r* r* r r rw r* rw rw rw* r rw rw rw* rw* rw rw

BIT NAME DESCRIPTION

15 I2CBUS
I2C Master Bus Busy . This bit is set to 1 when a START/repeated START condition is detected and
cleared to 0 when the STOP condition is detected . This bit is reset to 0 when I2CEN = 0 . This bit is con-
trolled by hardware and is read only .

14 I2CBUSY
I2C Master Busy . This bit is used to indicate the current status of the I2C controller . The I2CBUSY is set
to 1 when the I2C controller is actively participating in a transaction . This bit is controlled by hardware
and is read only .

13:12 —– Reserved . The user should not write to these bits .

11 I2CSPI
I2C Master STOP Interrupt Flag . This bit is set to 1 when a STOP condition is detected . This bit must be
cleared to 0 by software once set . Setting this bit to 1 by software causes an interrupt if enabled .

10 I2CSCL
I2C Master SCL Status . This bit reflects the logic state of the SCL signal . This bit is set to 1 when SCL is
at a high logic level and cleared to 0 when SCL is at a low logic level . This bit is controlled by hardware
and is read only .

9 I2CROI

I2C Master Receiver Overrun Flag . This bit indicates a receive overrun when set to 1 . This bit is set to
1 if the receiver has received 2 bytes since the last software reading of I2CBUF_M . This bit can only
be cleared to 0 by software reading I2CBUF_M . Setting this bit to 1 by software causes an interrupt if
enabled .

8 I2CGCI This bit has no function when operating in master mode .

7 I2CNACKI
I2C Master NACK Interrupt Flag . This bit is set by hardware to a 1 if a NACK was received from a slave
or a 0 if an ACK was received from a slave . The setting of this bit to a 1 by hardware causes an interrupt
if enabled . This bit can be cleared to 0 by software once set . This bit is set by hardware only .

6 —– Reserved . The user should not write to this bit .

5 I2CAMI This bit has no function when operating in master mode .

4 I2CTOI

I2C Master Timeout Interrupt Flag . This bit is set to a 1 if the I2C controller cannot generate a START or
STOP condition or the SCL low time is greater than the timeout value specified in the I2CTO_M register .
This bit must be cleared to 0 by software once set . Setting this bit to 1 by software causes an interrupt if
enabled .

3 I2CSTRI

I2C Master Clock Stretch Interrupt Flag . This bit indicates that the I2C master controller is operating with
clock stretching enabled and is currently holding the SCL clock signal low . The I2C controller releases
SCL after this bit has been cleared to 0 . This bit must be cleared to 0 by software once set . This bit is
set by hardware only .

2 I2CRXI
I2C Master Receive Ready Interrupt Flag . This bit indicates that a data byte has been received in
I2CBUF_M . This bit must be cleared by software once set . This bit is set by hardware only .

1 I2CTXI

I2C Master Transmit Complete Interrupt Flag . This bit indicates that an address or a data byte has been
successfully shifted out and the I2C controller has received an acknowledgment from the receiver (ACK
or NACK) . This bit must be cleared by software once set . Setting this bit to 1 by software causes an
interrupt if enabled .

0 I2CSRI
I2C Master START Interrupt Flag . This bit is set to 1 when a START condition (or restart) is detected .
This bit must be cleared to 0 by software once set . Setting this bit to 1 by software causes an interrupt if
enabled .

� � Maxim�Integrated�� � 8-11

MAX31782 User’s Guide

Revision 0; 8/11

8.2.3�I2C�Master�Interrupt�Enable�Register�(I2CIE�M)
Address: M1[02h]

8.2.4�I2C�Master�Data�Buffer�Register�(I2CBUF�M)
Address: M1[00h]

*Unrestricted read access. This register can be written to only when I2CBUSY = 0.

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Name — — — — I2CSPIE — I2CROIE I2CGCIE I2CNACKIE — I2CAMIE I2CTOIE I2CSTRIE I2CRXIE I2CTXIE I2CSRIE

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Access r r r r rw r rw rw rw r rw rw rw rw rw rw

BIT NAME DESCRIPTION

15:12 — Reserved . The user should not write to these bits .

11 I2CSPIE
I2C Master STOP Interrupt Enable . Setting this bit to 1 enables an interrupt when a STOP condition is
detected (I2CSPI = 1) . Clearing this bit to 0 disables the STOP detection interrupt .

10 — Reserved . The user should not write to this bit .

9 I2CROIE
I2C Master Receiver Overrun Interrupt Enable . Setting this bit to 1 enables an interrupt when a
receiver overrun condition is detected (I2ROI = 1) . Clearing this bit to 0 disables the receiver overrun
detection interrupt .

8 I2CGCIE This bit has no function when operating in master mode .

7 I2CNACKIE
I2C Master NACK Interrupt Enable . Setting this bit to 1 enables an interrupt when a NACK is detect-
ed (I2CNACKI = 1) . Clearing this bit to 0 disables the NACK detection interrupt .

6 — Reserved . The user should not write to this bit .

5 I2CAMIE This bit has no function when operating in master mode .

4 I2CTOIE
I2C Master Timeout Interrupt Enable . Setting this bit to 1 enables an interrupt when a timeout condi-
tion is detected (I2CTOI = 1) . Clearing this bit to 0 disables the timeout interrupt .

3 I2CSTRIE
I2C Master Clock Stretch Interrupt Enable . Setting this bit to 1 enables an interrupt when the clock
stretch interrupt flag is set (I2CSTRI = 1) . Clearing this bit disables the clock stretch interrupt .

2 I2CRXIE
I2C Master Receive Ready Interrupt Enable . Setting this bit to 1 enables an interrupt when the receive
ready interrupt flag is set (I2CRXI = 1) . Clearing this bit to 0 disables the receive ready interrupt .

1 I2CTXIE
I2C Master Transmit Complete Interrupt Enable . Setting this bit to 1 enables an interrupt when the
transmit complete interrupt flag is set (I2CTXI = 1) . Clearing this bit to 0 disables the transmit com-
plete interrupt .

0 I2CSRIE
I2C Master START Interrupt Enable . Setting this bit to 1 enables an interrupt when a START condition
is detected (I2CSRI = 1) . Clearing this bit to 0 disables the START detection interrupt .

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Name — — — — — — — — D7 D6 D5 D4 D3 D2 D1 D0

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Access r r r r r r r r rw* rw* rw* rw* rw* rw* rw* rw*

BIT NAME DESCRIPTION

15:8 — Reserved . The user should not write to these bits .

7:0 D[7:0]
Data for I2C transfer is read from or written to this location . The I2C transmit and receive buffers are
separate but both are addressed at this location .

� � Maxim�Integrated 8-12

MAX31782 User’s Guide

Revision 0; 8/11

8.2.5�I2C�Master�Clock�Control�Register�(I2CCK�M)
Address: M1[0Dh]

8.2.6�I2C�Master�Timeout�Register�(I2CTO�M)
Address: M1[0Eh]

The I2CTO_M register determines the length of the timeout interval . The timeout interval is defined by the number of I2C
bit periods (SCL high + SCL low) . When cleared to 00h, the timeout function is disabled . When set to any other value,
the I2C controller waits until the timeout expires and sets the I2CTOI flag . The timeout period is:

I2C Timeout = I2C Bit Rate x (I2CTO[7:0] + 1)

The timeout timer resets to 0 and starts to count after each of the following events .

• The I2CSTART bit is set .

• The I2CSTOP bit is set .

• Any time SCL goes low .

8.2.7�I2C�Master�Address�Register�(I2CSLA�M)
Address: M1[0Fh]

This register has no function when operating in master mode .

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Name I2CCKH7 I2CCKH6 I2CCKH5 I2CCKH4 I2CCKH3 I2CCKH2 I2CCKH1 I2CCKH0 I2CCKL7 I2CCKL6 I2CCKL5 I2CCKL4 I2CCKL3 I2CCKL2 I2CCKL1 I2CCKL0

Reset 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 1

Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

BIT NAME DESCRIPTION

15:8 I2CCKH[7:0]

These bits define the high period of the I2C clock . This period is defined by the number of system
clocks . The high time duration is calculated using the following equation:

I2C High Time Period = System Clock Period x (I2CCKH[7:0] + 1)
I2CCKH[7:0] must be set to a minimum value of 2 to ensure proper operation . Any value less than 2
is set to 2 .

7:0 I2CCKL[7:0]

These bits define the low period of the I2C clock . This period is defined by the number of system
clocks . The low time duration is calculated using the following equation:

I2C Low Time Period = System Clock Period x (I2CCKL[7:0] + 1)
I2CCKL[7:0] must be set to a minimum value of 4 to ensure proper operation . Any value less than 4
is set to 4 .

Bit 7 6 5 4 3 2 1 0

Name I2CTO7 I2CTO6 I2CTO5 I2CTO4 I2CTO3 I2CTO2 I2CTO1 I2CTO0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Name — — — — — — — — — A6 A5 A4 A3 A2 A1 A0

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Access r r r r r r r r rw rw rw rw rw rw rw rw

� � Maxim�Integrated� 8-13

MAX31782 User’s Guide

Revision 0; 8/11

8.2.8�SMBus�Mode�Selection�Register�(SMBUS)
Address: M3[04h]

This register contains bits that are used for both the I2C slave interface (SDA and SCL) and the I2C master interface
(MSDA and MSCL) . For operation of the master interface, only the master bits should be used .

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Name — — — — — — — — — — — — RESET_S RESET_M SMB_MOD_S SMB_MOD_M

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Access r r r r r r r r r r r r rw rw rw rw

BIT NAME DESCRIPTION

15:4 — Reserved . The user should not write to these bits .

3 RESET_S This bit does not affect the master I2C interface (MSDA and MSCL) .

2 RESET_M
I2C Master Reset Bit . This bit can be used by the software to unconditionally reset and disable the
I2C master interface . After at least one system clock cycle, this bit must be cleared by software .
After this bit is toggled, all the relevant I2C master registers need to be reinitialized .

1 SMB_MOD_S This bit does not affect the master I2C interface (MSDA and MSCL) .

0 SMB_MOD_M
This bit enables the SMBUS timeout feature only when the master I2C interface (MSDA and MSCL)
is enabled to be a slave interface . See the 8.1.12 Operation as a Slave section for more details .

� � Maxim�Integrated�� �9-1

MAX31782 User’s Guide

Revision 0; 8/11

SECTION 9: PWM OUTPUTS

9 .1 Detailed Description . .9-3

9 .1 .1 PWM Pin Mapping and GPIO Muliplexing . .9-3

9 .1 .2 PWM Operation .9-3

9 .1 .3 Normal PWM Output Operation .9-4

9 .1 .4 Up/Down Count PWM Output Operation .9-5

9 .2 PWM Output Register Descriptions .9-6

9 .2 .1 PWM Control Register (PWMCNn) .9-6

9 .2 .2 PWM Value Register (PWMVn) . .9-7

9 .2 .3 PWM Reload Register (PWMRn) .9-7

9 .2 .4 PWM Compare Register (PWMCn) .9-7

9 .2 .5 PWM Register Locations .9-7

9 .3 PWM Output Code Example .9-7

LIST OF TABLES

Table 9-1 . PWM/GPIO Pin Multiplexing .9-3

Table 9-2 . PWM Output Modes .9-3

Table 9-3 . PWM Register Addresses . .9-7

LIST OF FIGURES

Figure 9-1 . PWM Output Block Diagram .9-2

Figure 9-2 . PWM Output Waveform in Normal PWM Output Mode . .9-4

Figure 9-3 . PWM Waveform in Up/Down Count PWM Output Mode . .9-5

This section contains the following information:

� � Maxim�Integrated�� �9-2

MAX31782 User’s Guide

Revision 0; 8/11

SECTION 9: PWM OUTPUTS
The MAX31782 provides six independent PWM output pins that can be used for power-supply margining or fan speed
control . When the PWM output functionality of a pin is disabled, that pin can be used as a general-purpose input/output
(GPIO) . A diagram for one individual PWM output block is shown in Figure 9-1 .

Figure 9-1. PWM Output Block Diagram

PWMPS[2:0]

15
PWMCn

0

15 0

001

010

011

100

101

11x

000

SYSTEM CLOCK/4

SYSTEM CLOCK/16

SYSTEM CLOCK/64

SYSTEM CLOCK/256

SYSTEM CLOCK/1024

SYSTEM CLOCK/1

SYSTEM CLOCK/1

4MHz
SYSTEM
CLOCK

CLOCK
PRESCALER

PWMEN

THIS DIAGRAM SHOWS ONE OF THE SIX INDEPENDENT PWM OUTPUTS.
THE ‘n’ SUFFIX IS USED TO DENOTE THE NAME OF THE PWM OUTPUT’S
PIN AND REGISTERS, WHERE n = 0 TO 5. THE BITS AND FLAGS SHOWN
ARE LOCATED IN EACH PWM’S CONTROL REGISTER, PWMCNn.

PWMRn

COMPARE

PWMVn

0000h

PWMCS
PWMCR

TFB = 1

ETB

PWMn
INTERRUPT

PWM.n
PIN

� � Maxim�Integrated� 9-3

MAX31782 User’s Guide

Revision 0; 8/11

9.1�Detailed�Description

9.1.1�PWM�Pin�Mapping�and�GPIO�Muliplexing
Table 9-1 shows the mapping of each PWM Output . This table also shows that the PWM pins are mapped to GPIO
port P1[5:0] . When a PWM output pin’s functionality is disabled (PWMCS = 0 or PWMCR = 0), the pin can be used as
a GPIO . See SECTION 11: General-Purpose Input/Output (GPIO) Pins for information on using the PWM pins as GPIO .

9.1.2�PWM�Operation
A PWM output pin is enabled when either the PWMCS or PWMCR bit is set to 1 . Table 9-2 describes how these bits
determine the specific PWM operation . The PWM counter does not begin operating until the PWMEN bit is set to 1 .

Table�9-1.�PWM/GPIO�Pin�Multiplexing

Table�9-2.�PWM�Output�Modes

The PWM can provide up to 16-bit resolution of the frequency or duty cycle . A timed setting or clearing of the PWM .n pin
can also be generated without the need for the MAX31782 to time the event or use GPIO . This is accomplished by set-
ting the compare register (PWMCn) to a value greater than the reload register (PWMRn) . This functionality is illustrated
in Figure 9-2 and Figure 9-3 . The PWM can operate in a normal up-count-only configuration (DCEN = 0), or in a count
up/down configuration (DCEN = 1) .

PWM�OUTPUT�PIN MAX31782�PIN�NUMBER GPIO�PIN

PWM .0 28 P1 .0

PWM .1 26 P1 .1

PWM .2 24 P1 .2

PWM .3 20 P1 .3

PWM .4 18 P1 .4

PWM .5 16 P1 .5

PWMCS:PWMCR PWM�MODE TBB�PIN�FUNCTION
INITIAL�STATE

WHEN�PWMEN�=�0
NOTES

00 None None (Disabled) No change

01 Reset
Reset on PWMCn Match
Set on 0000h

Low Will not output a 0% duty cycle .

10 Set
Set on PWMCn Match
Reset on PWMRn Match

High Will not output a 100% duty cycle

11 Toggle Toggle on PWMCn Match No change

� � Maxim�Integrated� 9-4

MAX31782 User’s Guide

Revision 0; 8/11

Figure 9-2. PWM Output Waveform in Normal PWM Output Mode

9.1.3�Normal�PWM�Output�Operation
When operating in PWM output mode and configured for up count (DCEN = 0), the value in PWMVn is incremented until
it reaches the reload value, PWMRn . At this point, PWMVn reloads with 0000h, the TFB flag is set (which can generate
an interrupt if enabled), and counting continues . Figure 9-2 illustrates the PWM waveforms when the PWM is operating
with DCEN = 0 . The period of the PWM waveform is set by the value in the PWMRn register . The set and reset modes
provide similar functionality . The formulas for period and duty cycle are:

PWM PERIOD = (PWMRn + 1) × PWM .n CLOCK PERIOD

Duty Cycle in Set Mode =
PWMRn PWMCn

PWMRn 1
−

+

Duty Cycle in Reset Mode =
PWMCn

PWMRn 1+

The toggle mode generates a 50% duty-cycle waveform if the PWMCn register remains fixed . The period of the wave-
form is:

PERIOD = 2 × (PWMRn + 1) × PWM .n CLOCK PERIOD

PWMCn > PWMRn

PWMCn < PWMRn

0000

PWMVn

SET MODE

RESET MODE

TOGGLE MODE

SET MODE

RESET MODE

TOGGLE MODE

PWMRn

PWMCn < PWMRn

PWMCn > PWMRn

� �Maxim�Integrated�� � 9-5

MAX31782 User’s Guide

Revision 0; 8/11

9.1.4�Up/Down�Count�PWM�Output�Operation
The PWM can also operate in an up/down count configuration by setting DCEN = 1 . The value in PWMVn counts upward
until it reaches the value in the reload register (PWMRn) . On the next cycle the count reverses direction and starts count-
ing down . When PWMVn reaches 0000h, the count again reverses direction and begins counting up .

When operating in an up/down count configuration and either set or reset mode, the PWM effectively allows 17-bit
resolution . In set mode the duty cycle is always less than 50%, and in reset mode the duty cycle is always greater than
50% . The toggle mode provides a center-aligned 16-bit PWM with twice the period of the normal PWM output mode .
Figure 9-3 illustrates the PWM waveforms when operating in up/down count PWM output mode . The up/down count
PWM output period and duty cycle are calculated as follows:

Period = 2 × PWMRn × PWM .n CLOCK PERIOD

Duty Cycle in Set Mode =
PWMRn PWMCn

2 PWMRn
+

×

Duty Cycle in Reset Mode =
PWMCn

2 PWMRn×

Duty Cycle in Toggle Mode =
PWMRn PWMCn

PWMRn
−

Figure 9-3. PWM Waveform in Up/Down Count PWM Output Mode

PWMCn > PWMRn

PWMCn < PWMRn

0000h

SET MODE

RESET MODE

TOGGLE MODE

SET MODE

RESET MODE

TOGGLE MODE

PWMRn

PWMCn < PWMRn

PWMCn > PWMRn

PW
MVn

� �Maxim�Integrated�� � 9-6

MAX31782 User’s Guide

Revision 0; 8/11

9.2�PWM�Output�Register�Descriptions
The following peripheral registers are used to control the PWM outputs of the MAX31782 . Each of the six independent
PWM outputs has four associated registers . Since there are six independent PWM outputs, the registers are described
in a batch manner . For example, the control register is denoted as PWMCNn, where n = 0 to 5 . Each PWM register is
independent, meaning each PWM can be configured and operated differently .

9.2.1�PWM�Control�Register�(PWMCNn)
The PWM control register, PWMCNn, is used to set up and start the PWM output . To avoid undesired operation, the user
should not modify the reserved bits in the PWMCNn registers .

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Name — — — PWMCS PWMCR PWMPS2 PWMPS1 PWMPS0 TFB — — DCEN — PWMEN ETB —

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Access r r r rw rw rw rw rw rw r r rw r rw rw r

BIT NAME DESCRIPTION

15:13 — Reserved . The user should not write to these bits .

12:11
PWMCS,
PWMCR

PWM Pin Output Set/Reset Mode Bits . These mode bits define if the PWM output function is
enabled on the PWM .n pin, the initial output starting state when the PWM is disabled (PWMEN = 0),
and what compare mode output function is used .

10:8 PWMPS[2:0]

PWM Clock Prescaler Bits . These bits select the clock prescaler applied to the system clock, which
is then used as the PWM clock . The PWMPS[2:0] bits should be configured by the user when the
timer is stopped (PWMEN = 0) . While hardware does not prevent changing the PWMPS[2:0] bits
when the PWM is running, the resulting behavior is nondeterministic .

PWMPS[2:0] PWM�INPUT�CLOCK

000 Sysclk

001 Sysclk/4

010 Sysclk/16

011 Sysclk/64

100 Sysclk/256

101 Sysclk/1024

11x Sysclk

7 TFB
PWM Overflow Flag . This bit is set when the PWM overflows or reaches PWMRn and is reloaded to
0000h . The TFB flag is also set when PWMVn is equal to 0000h in when counting down . The setting
of this flag causes an interrupt if enabled . This flag must be cleared by software .

6:5 — Reserved . The user should not write to these bits .

4 DCEN
Down-Count Enable . The DCEN bit controls if the PWM operates in normal PWM mode and counts
up only (DCEN = 0), or operates in up/down count mode and counts up and down (DCEN = 1) .

3 — Reserved . The user should not write to this bit .

2 PWMEN
PWM Run Control . This bit enables PWM operation when set to 1 . Clearing this bit to 0 halts the
PWM operation and preserves the current count in PWMVn .

1 ETB PWM Interrupt . Setting this bit to 1 enables interrupts from the TFB flag .

0 — Reserved . The user should not write to this bit .

� �Maxim�Integrated�� � 9-7

MAX31782 User’s Guide

Revision 0; 8/11

9.2.2�PWM�Value�Register�(PWMVn)
The PWM value register, PWMVn, holds the 16-bit value of the PWM’s counter . Enabling or disabling the PWM with
the PWMEN bit does not reset the PWMVn register . The PWMVn register must be cleared by software . This register is
cleared to 0000h on all forms of reset and has unrestricted read/write access .

9.2.3�PWM�Reload�Register�(PWMRn)
The PWM reload register, PWMRn, is a 16-bit register that is used as a comparison to the PWMVn register . A reload of
the PWMVn register occurs when PWMVn matches PWMRn . This register is cleared to 0000h on all forms of reset and
has unrestricted read/write access .

9.2.4�PWM�Compare�Register�(PWMCn)
The PWM compare register, PWMCn, is a 16-bit register that is used as a comparison to the PWMVn register . Depending
upon the mode of PWM operation, the PWM .n pin is driven high or low when a match between PWMVn and PWMCn
occurs . This register is cleared to 0000h on all forms of reset and has unrestricted read/write access .

9.2.5�PWM�Register�Locations
The addresses for the PWM output registers are given as “Mx[yy],” where x is the module number (from 0 to 5 decimal)
and yy is the register index (from 00h to 1Fh hexadecimal) . Table 9-3 shows the addresses of these registers for each
of the six PWM outputs (PWM .n) .

9.3�PWM�Output�Code�Example
Creating a 40% duty cycle 25kHz signal:

PWMCN0_bit.PWMPS	=	0;		 //PWM.0	input	clk	=	sysclk

PWMR0	=	159;		 	 	 //PWM	period	=	160	sysclks

PWMC0	=	64;		 	 	 //duty	cycle	=	64/160

PWMCN0_bit.PWMCR	=	1;		 //set	to	reset	mode

PWMCN0_bit.PWMCS	=	0;		 //set	to	reset	mode

PWMCN0_bit.PWMEN	=	1;		 //enable	PWM.0

Table�9-3.�PWM�Register�Addresses

REGISTER�NAME
INDIVIDUAL�PWM�OUTPUT�NUMBER

n�=�0 n�=�1 n�=�2 n�=�3 n�=�4 n�=�5

PWMCNn M3[09h] M3[0Bh] M4[09h] M4[0Bh] M5[09h] M5[17h]

PWMVn M3[08h] M3[0Ah] M4[08h] M4[0Ah] M5[08h] M5[16h]

PWMRn M3[01h] M3[03h] M4[01h] M4[03h] M5[0Bh] M5[15h]

PWMCn M3[00h] M3[02h] M4[00h] M4[02h] M5[0Ah] M5[14h]

� � Maxim�Integrated�� � 10-1

MAX31782 User’s Guide

Revision 0; 8/11

SECTION 10: FAN TACHOMETER

10 .1 Fan Tachometer Detailed Description .10-3

10 .2 Timer/Fan Tachometer Register Descriptions .10-3

10 .2 .1 Tachometer Control Register (TACHCNn) .10-4

10 .2 .2 Tachometer Value Register (TACHVn) .10-5

10 .2 .3 Tachometer Capture Register (TACHRn) .10-5

10 .2 .3 Tachometer Register Locations .10-5

10 .3 Tachometer Pin and GPIO Multiplexing .10-5

10 .4 Tachometer Code Example .10-6

LIST OF TABLES

Table 10-1 . Tachometer Register Addresses .10-5

Table 10-2 . Tachometer/GPIO Pin Multiplexing Input Pins .10-5

LIST OF FIGURES

Figure 10-1 . Tachometer Input Block Diagram .10-2

This section contains the following information:

� � Maxim�Integrated�� � 10-2

MAX31782 User’s Guide

Revision 0; 8/11

SECTION 10: FAN TACHOMETER
The MAX31782 provides six independent fan tachometers that can be used to monitor the speed of six fans indepen-
dently . When the fan tachometer functionality of a pin is disabled, that pin can be used as a general-purpose input/
output (GPIO) . Figure 10-1 shows a diagram for one individual fan tachometer block .

Figure 10-1. Tachometer Input Block Diagram

CLOCK
PRESCALER

TEXF

0000h

TACHVn REGISTER

TACHRn REGISTER

15 0

15 0

TF

TACHIE

TACHOMETER
INTERRUPT

SYSTEM
CLOCK

ƒ

TACHE

CAPTURE

TACH.n
PIN

REVOLUTION
PRESCALER

TEXEN

TPS[2:0]

000

001

010

011

SYSTEM CLOCK /1

100

101

11x

SYSTEM CLOCK /4

SYSTEM CLOCK /16

SYSTEM CLOCK /64

SYSTEM CLOCK /256

SYSTEM CLOCK /1024

SYSTEM CLOCK /1

TRPS[1:0]

00

01

10

11

DIVIDE BY 1

DIVIDE BY 2

DIVIDE BY 4

DIVIDE BY 8

THIS DIAGRAM SHOWS ONE OF THE SIX INDEPENDENT TACHOMETERS.
THE “n” SUFFIX IS USED TO DENOTE THE NAME OF THE TACHOMETER’S
PIN AND REGISTERS, WHERE n = 0 TO 5. THE BITS AND FLAGS SHOWN
ARE LOCATED IN EACH TACHOMETER’S CONTROL REGISTER, TACHCn.

� � Maxim�Integrated�� � 10-3

MAX31782 User’s Guide

Revision 0; 8/11

10.1�Fan�Tachometer�Detailed�Description
When a tachometer is initially enabled (TACHE = 1), it begins counting up from the TACHV value . The frequency of the
counter is derived from the MAX31782’s 4MHz system clock (fMOSC) . The tachometer can use a divided version of the
system clock by using the timer prescaler (TPS[2:0] bits) . When the TACHV count value reaches FFFFh, the counter
rolls over to 0000h and continues counting . When an overflow occurs, the TF flag is set, which can generate an inter-
rupt if enabled .

The tachometer feature works by capturing the number of system clocks, or divided system clocks, that occur during
one revolution of a fan . The tachometer block is triggered on the falling edge of the tachometer pin . Many fans output
multiple pulses per revolution . The tachometer block contains a revolution prescaler to compensate for fans that do
output multiple pulses per revolution . The revolution prescaler (TRPS[1:0] bits) can be programmed to work with fans
that output 1, 2, 4, or 8 pulses per revolution . When the number of falling edges received at the tachometer pin matches
the pulses per revolution defined by the revolution prescaler, tachometer block captures the number of system clock
counts for the fan revolution . When a capture is triggered the following occurs:

1) The value in the TACHV counter register is copied to the capture register (TACHR) .

2) The TACHV register is reset to 0000h and continues counting .

3) The TEXF flag is set . This causes an interrupt if enabled .

Note that the TEXF flag can be set (and causes an interrupt if enabled) even if the tachometer is not enabled
(TACHE = 0) . If the TEXEN bit is set to logic 0, falling edges on the tachometer pin do not trigger a capture event .

Following is an example of how to calculate the fan speed after the tachometer has captured one revolution . This
example assumes that the clock prescaler is set to be divide by 16 (010h) and the value read from the TACHR register
is 1000h . The tachometer clock is calculated to be:

Tachometer Clock = Sysclk/16 = 4MHz/16 = 250kHz

The frequency of the fan revolution can then be calculated as:

Fan Frequency = Tachometer Clock/TACHR = 250kHz/1000h = 61Hz, which equals 3660 RPM

10.2�Timer/Fan�Tachometer�Register�Descriptions
The following peripheral registers are used to control the fan tachometer of the MAX31782 . Each of the six indepen-
dent tachometers has three associated registers . Because there are six independent tachometers, the registers are
described in a batch manner . For example, the control register is denoted as TACHCNn, where n = 0 to 5 . Each tachom-
eter’s registers are independent, meaning each tachometer can be configured and operated differently .

� �Maxim�Integrated� 10-4

MAX31782 User’s Guide

Revision 0; 8/11

10.2.1�Tachometer�Control�Register�(TACHCNn)
The tachometer control register, TACHCNn, is used to set up and start the tachometer, and is also where tachometer
interrupt flags are located . It should be noted that the user should not modify the reserved bits in the TACHCNn regis-
ters . Otherwise, undesired operation can occur .

BIT NAME DESCRIPTION

15 — Reserved . The user should not write to this bit .

14:13 TRPS[1:0]

Revolution Prescaler . These bits are used to set the number of tachometer pin falling edges are
required to trigger a capture . This allows the tachometer to easily work with fans that produce mul-
tiple pulses per revolution .

TRPS[1:0] PRESCALER

00 1 pulse per revolution

01 2 pulses per revolution

10 4 pulses per revolution

11 8 pulses per revolution

12:11 — Reserved . The user should not write to these bits .

10:9 TPS[2:0]

Clock Prescale . These bits select the frequency of the clock input to the tachometer . The tachom-
eter clock is a divided version of the system clock . The TPS[2:0] bits should be configured by
the user when the timer is stopped (TACHE = 0) . While hardware does not prevent changing the
TPS[2:0] bits when the timer is running, the resultant behavior is nondeterministic .

TPS[2:0] TACHOMETER�INPUT�CLOCK

000 Sysclk/1

001 Sysclk/4

010 Sysclk/16

011 Sysclk/64

100 Sysclk/256

101 Sysclk/1024

11x Sysclk/1

7 TF
Overflow Flag . This bit is set when the tachometer’s TACHV register overflows from FFFFh to 0000h .
An interrupt will be generated if TACHIE=1 . This flag must be cleared by software .

6 TEXF

External Tachometer Trigger Flag . A falling edge on the tachometer’s pin (TACH .n) causes this flag
to be set if enabled (TEXEN = 1) . The TEXF flag is only set once the tachometer revolution prescal-
er condition is met . This flag must be cleared by software . Setting this bit to 1 forces a tachometer
interrupt if enabled .
Note�1: The revolution prescaler always triggers on the first tachometer pulse received, then,
depending on division factor, it triggers again after 1, 2, 4, or 8 tachometer pulses .
Note�2:�This flag is set on a falling edge of the tachometer pin even if the tachometer is disabled
(TACHE = 0) .

5:4 — Reserved . The user should not write to these bits .

3 TEXEN
External Enable . Setting this bit to 1 enables the capture function on a falling edge of the tachom-
eter pin (TACH .n) .

2 TACHE
Run Control . This bit enables the tachometer operation when set to 1 . Clearing this bit to 0 halts the
tachometer operation and preserves the current count in TACHV .

1 TACHIE Enable Tachometer Interrupt . Setting this bit to 1 enables the interrupt from the TF and TEXF flags .

0 — Reserved . The user should not write to this bit .

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Name — TRPS .1 TRPS .0 — — TPS .2 TPS .1 TPS .0 TF TEXF — — TEXEN TACHE TACHIE —

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Access r rw rw r r rw rw rw rw rw r r rw rw rw r

� � Maxim�Integrated� �10-5

MAX31782 User’s Guide

Revision 0; 8/11

10.2.2�Tachometer�Value�Register�(TACHVn)
The tachometer value register, TACHVn, holds the 16-bit value of the tachometer’s up-counting timer . Enabling/dis-
abling the tachometer with the TACHE bit does not reset this count value; it must be cleared explicitly by software . This
register is cleared to 0000h on all forms of reset and has unrestricted read/write access .

10.2.3�Tachometer�Capture�Register�(TACHRn)
The tachometer capture register, TACHRn, stores the 16-bit value in TACHVn when a tachometer capture occurs . The
TACHRn value indicates how many prescaled system clock pulses occurred during one revolution of the fan, assum-
ing the revolution prescaler is set correctly . The value in TACHRn is typically used to calculate fan speed in fan control
applications . This register is cleared to 0000h on all forms of reset and has unrestricted read/write access .

10.2.3�Tachometer�Register�Locations
The addresses for the tachometer registers are given as “Mx[yy],” where x is the module number (from 0 to 5 decimal)
and yy is the register index (from 00h to 1Fh hexadecimal) . Table 10-1 shows the address for these registers for each
of the six tachometer blocks (TACH .n) .

Table�10-1.�Tachometer�Register�Addresses

Table�10-2.�Tachometer/GPIO�Pin�Multiplexing�Input�Pins

10.3�Tachometer�Pin�and�GPIO�Multiplexing
When the tachometer’s pin functionality is disabled (TEXEN = 0), that pin can be used as a GPIO . The tachometer
pins are mapped to GPIO port P2[5:0] . Table 10-2 shows the mapping of the MAX31782 tachometer pins . Refer to
SECTION 11: General-Purpose Input/Output (GPIO) Pins for information on using the tachometer pins as GPIO .

REGISTER�NAME
INDIVIDUAL�TACHOMETER�NUMBER

n�=�0 n�=�1 n�=�2 n�=�3 n�=�4 n�=�5

TACHCNn M3[0Dh] M3[0Fh] M4[0Dh] M4[0Fh] M5[0Dh] M5[13h]

TACHRn M3[05h] M3[07h] M4[05h] M4[07h] M5[0Fh] M5[11h]

TACHVn M3[0Ch] M3[0Eh] M4[0Ch] M4[0Eh] M5[0Ch] M5[12h]

TACHOMETER�INPUT�PIN MAX31782�PIN GPIO�PIN

TACH .0 30 P2 .0

TACH .1 27 P2 .1

TACH .2 25 P2 .2

TACH .3 23 P2 .3

TACH .4 19 P2 .4

TACH .5 17 P2 .5

� �Maxim�Integrated 10-6

MAX31782 User’s Guide

Revision 0; 8/11

10.4�Tachometer�Code�Example
The following pseudocode shows how to set up tachometer 0 . This example does not generate any interrupts, but
instead the captured tachometer value can be periodically polled by software .

Tachometer setup:

TACHCN0_bit.TPS	=	3;	 	 //tachometer	clock	is	sysclk	/	64	or	62.5kHz

TACHCN0_bit.TRPS	=	1;		 //set	for	2	pulses	per	revolution

TACHCN0_bit.TEXEN	=	1;	 //enable	edge	capture	of	TACH.0	pin

TACHCN0_bit.TACHE	=	1;	 //start	the	tachometer	count

Reading the tachometer:

tach_counts	=	TACHR0;		 //store	the	captured	tachometer	counts	for	the	last

	 	 	 	 	 revolution	in	a	variable

� � Maxim�Integrated 11-1

MAX31782 User’s Guide

Revision 0; 8/11

SECTION 11: GENERAL-PURPOSE INPUT/OUTPUT (GPIO) PINS

11 .1 GPIO Port 1 Register Descriptions .11-4

11 .1 .1 GPIO Direction Register Port 1 (PD1) .11-4

11 .1 .2 GPIO Output Register Port 1 (PO1) .11-4

11 .1 .3 GPIO Input Register for Port 1 (PI1) .11-4

11 .2 GPIO Port 2 Register Descriptions .11-5

11 .2 .1 GPIO Direction Register Port 2 (PD2) .11-5

11 .2 .2 GPIO Output Register Port 2 (PO2) .11-5

11 .2 .3 GPIO Input Register for Port 2 (PI2) .11-5

11 .3 GPIO Port 6 Register Descriptions .11-6

11 .3 .1 GPIO Direction Register Port 6 (PD6) .11-6

11 .3 .2 GPIO Output Register Port 6 (PO6) .11-6

11 .3 .3 GPIO Input Register for Port 6 (PI6) .11-7

11 .3 .4 GPIO Port 6 External Interrupt Edge Select Register (EIES6) .11-7

11 .3 .5 GPIO Port 6 External Interrupt Flag Register (EIF6) .11-7

11 .3 .6 GPIO Port 6 External Interrupt Enable Register (EIE6) .11-7

11 .4 GPIO Code Example .11-8

LIST OF TABLES

Table 11-1 . GPIO Pins and Multiplexed Functions .11-3

Table 11-2 . GPIO Registers .11-3

LIST OF FIGURES

Figure 11-1 . GPIO Pin Block Diagram .11-2

This section contains the following information:

� � Maxim�Integrated� 11-2

MAX31782 User’s Guide

Revision 0; 8/11

SECTION 11: GENERAL-PURPOSE INPUT/OUTPUT (GPIO) PINS
The MAX31782 provides general-purpose input/output (GPIO) functionality on 21 pins . In addition to the GPIO function-
ality, each of these pins is multiplexed with at least one other function, which is classified as either a special function
or alternate function .

Special functions override the GPIO register settings of the port pin when they are enabled . Once the special function
takes control, normal control of the port pin is lost until the special function is disabled .

Alternate functions operate in parallel with the GPIO register settings for the port pin, and generally consist of input-only
functions . When an alternate function is enabled for a port pin, the port pin’s output state can still be controlled by the
GPIO register settings, or driven by external hardware .

Table 11-1 details all the GPIO pins as well as what other functions are multiplexed with each pin . With the exception
of a few pins, which are described in further detail later, the GPIO pins operate as shown in the GPIO block diagram
(Figure 11-1) . Some of the features of these GPIO pins include the following:

• CMOS output drivers

• Schmitt trigger inputs

• Optional weak pullup to VDD when operating in input mode

Figure 11-1. GPIO Pin Block Diagram

PDp.n

SF = SPECIAL FUNCTION
AF = ALTERNATE FUNCTION

THE FORMAT FOR GPIO CONTROL BITS SHOWN IS PDp.n, WHERE
p DESIGNATES THE PORT (p = 1, 2, 6)
n IS THE PORT PIN (n = 0 TO 7)

SF ENABLE

POp.x

PIp.n , SF INPUT, OR AF INPUT

SF OUTPUT

SF DIRECTION

VDD

I/O PAD

M
UX

M
UX MAX31782

PIN

VDD

WEAK*

*THE pMOS AND WEAK PULLUP TRANSISTORS ARE NOT CONNECTED
TO THE SCL, SDA, MSCL, AND MSDA PINS.

*

EIF6.m

INTERRUPTS ONLY FOR PORT6

EIE6.m
EIES6.m

DETECT
CIRCUIT

MAX31782

� � Maxim�Integrated�� � 11-3

MAX31782 User’s Guide

Revision 0; 8/11

From a software perspective, each of the GPIO ports (port 1, port 2, and port 6) has three special-function registers
(POp, PIp, and PDp, where p = 1, 2, or 6) . Port 6 has three additional registers that allow for GPIO interrupts from the
port . Each GPIO port is designed to provide programming flexibility for any application . Table 11-2 lists the associ-
ated registers and their module addresses . The user should not write to any reserved bits as this can cause undesired
behavior .

Table�11-1.�GPIO�Pins�and�Multiplexed�Functions

Table�11-2.�GPIO�Registers

TCK: Test Access Port (TAP) Clock
TDI: Test Access Port (TAP) Data Input
TMS: Test Access Port (TAP) Mode Select
TDO: Test Access Port (TAP) Data Output
TBB: Timer/Counter B Input/Output B
TBA: Timer/Counter B Input/Output A

PIN NAME
PORT�
INDEX

ALTERNATE�
FUNCTION(S)

ALTERNATE�
FUNCTION�ENABLE

SPECIAL
FUNCTION

SPECIAL�FUNCTION�ENABLE
RESET�
STATE

28 PWM .0 P1 .0 — — PWM .0 PWMCN0 .PWMCR or PWMCS = 1 GPIO

26 PWM .1 P1 .1 — — PWM .1 PWMCN1 .PWMCR or PWMCS = 1 GPIO

24 PWM .2 P1 .2 — — PWM .2 PWMCN2 .PWMCR or PWMCS = 1 GPIO

20 PWM .3 P1 .3 — — PWM .3 PWMCN3 .PWMCR or PWMCS = 1 GPIO

18 PWM .4 P1 .4 — — PWM .4 PWMCN4 .PWMCR or PWMCS = 1 GPIO

16 PWM .5 P1 .5 — — PWM .5 PWMCN5 .PWMCR or PWMCS = 1 GPIO

30 TACH .0 P2 .0 TACH .0 TACHCN0 .TEXEN = 1 — — GPIO

27 TACH .1 P2 .1 TACH .1 TACHCN1 .TEXEN = 1 — — GPIO

25 TACH .2 P2 .2 TACH .2 TACHCN2 .TEXEN = 1 — — GPIO

23 TACH .3 P2 .3 TACH .3 TACHCN3 .TEXEN = 1 — — GPIO

19 TACH .4 P2 .4 TACH .4 TACHCN4 .TEXEN = 1 — — GPIO

17 TACH .5 P2 .5 TACH .5 TACHCN5 .TEXEN = 1 — — GPIO

15 MSCL P2 .6 — — MSCL I2CCN_M .I2CEN = 1 GPIO

14 MSDA P2 .7 — — MSDA I2CCN_M .I2CEN = 1 GPIO

38 P6 .0/TCK P6 .0 TCK SC .TAP = 1 — — TCK

37 P6 .1/TDI P6 .1 TDI SC .TAP = 1 — — TDI

35
P6 .2/TMS/

TBB
P6 .2

TMS,
TBB Input

SC .TAP = 1,
TB0CN .EXENB = 1

TBB Output TB0CN .TBCR or TBCS = 1 TMS

34 P6 .3/TDO P6 .3 — — TDO SC .TAP = 1 TDO

33 P6 .4/TBA P6 .4 TBA Input TB0CN .CnTB = 1 TBA Output TB0CN .CnTB = 0 and TBCN .TBOE = 1 GPIO

32 SCL P6 .6 — — SCL I2CCN_S .I2CEN = 1 SCL

31 SDA P6 .7 — — SDA I2CCN_S .I2CEN = 1 SDA

REGISTER FUNCTION PORT�1 PORT�2 PORT�6

POp Port Output Register M0[1h] M0[0h] M1[03h]

PIp Port Input Register M0[9h] M0[8h] M1[08h]

PDp Port Direction Register M0[11h] M0[10h] M1[12h]

EIF6 Port 6 External Interrupt Flag Register — — M1[06h]

EIE6 Port 6 External Interrupt Enable Register — — M1[07h]

EIES6 Port 6 External Interrupt Edge Select Register — — M1[10h]

� � Maxim�Integrated� 11-4

MAX31782 User’s Guide

Revision 0; 8/11

11.1�GPIO�Port�1�Register�Descriptions
Port 1 provides six GPIO pins that are multiplexed with PWM functionality . The PWM function is enabled when either the
PWMCNn .PWMCR or PWMCS bits are a 1, where n = 0 to 5 . If both of these bits are a 0, the pin operates as a GPIO .
The port 1 pins provide all the functionality shown in the GPIO block diagram (Figure 11-1) . This port does not provide
GPIO interrupts .

11.1.1�GPIO�Direction�Register�Port�1�(PD1)

PD1 is an 8-bit register used to determine the direction of the pins when they are used as GPIO pins . Each pin is inde-
pendently controlled by its direction bit . When PD1 .n (n = 0 to 5) is set to 1, the pin is an output; data in the PO1 .n bit
is driven on the pin . When PD1 .n is cleared to 0, the pin is an input, and allows an external signal to drive the pin . Note
that each port pin has a weak pullup circuit when functioning as an input . The p-channel pullup transistor is controlled
by the PO1 .n bit . If PO1 .n is set to 1, the corresponding weak pullup is turned on; if the PO1 .n bit is cleared to 0, the
weak pullup is turned off and the pin’s input is high impedance . When the port 1 pins are operating as PWM pins, the
data in PD1 does not affect PWM operation .

11.1.2�GPIO�Output�Register�Port�1�(PO1)

PO1 is an 8-bit register that controls the output data of a GPIO pin . If the pin is setup to be an output (PD1 .n = 1), the
data in PO1 .n is output on the pin . If the pin is set as an input (PD1 .n = 0), setting PO1 .n to a 1 enables a p-channel
weak pullup, otherwise the pin’s input is high impedance . When the port 1 pins are operating as PWM pins, the data
in PO1 does not affect PWM operation . Changing the direction of the pin does not change the data content of PO1 .n .

11.1.3�GPIO�Input�Register�for�Port�1�(PI1)

PI1 is an 8-bit register that contains the data that is applied to the GPIO pins . The PI1 input register contains valid input
data even when the pin is not operating as a GPIO . The reset value for this register is dependent on the logical states
applied to the pins . Note that each pin has a weak pullup circuit when functioning as an input and the p-channel pullup
transistor is controlled by the PO1 .n bit .

Bit 7 6 5 4 3 2 1 0

Name — — PD1_5 PD1_4 PD1_3 PD1_2 PD1_1 PD1_0

Reset 0 0 0 0 0 0 0 0

Access r r rw rw rw rw rw rw

Bit 7 6 5 4 3 2 1 0

Name — — PO1_5 PO1_4 PO1_3 PO1_2 PO1_1 PO1_0

Reset 1 1 1 1 1 1 1 1

Access r r rw rw rw rw rw rw

Bit 7 6 5 4 3 2 1 0

Name — — PI1_5 PI1_4 PI1_3 PI1_2 PI1_1 PI1_0

Reset 1 1 s s s s s s

Access r r r r r r r r

� � Maxim�Integrated� � 11-5

MAX31782 User’s Guide

Revision 0; 8/11

11.2�GPIO�Port�2�Register�Descriptions
Port 2 provides eight GPIO pins that are multiplexed with the tachometers and master I2C port . This port does not
provide GPIO interrupts .

The tachometer function is an alternate function . This means that the GPIO functions are fully supported, even when the
pin is operating as a tachometer . If the tachometer is enabled while the pin is being operated as an output GPIO pin,
a high-to-low output transition is monitored by the tachometer and can cause a tachometer interrupt . The tachometer
functionality is disabled by setting the TACHCNn .TEXEN bit to a 0, where n = 0 to 5 .

GPIO pins P2 .6 and P2 .7 are multiplexed with the master I2C port . The master I2C port is a special function and disables
GPIO output when enabled (I2CCN_M .I2CEN = 1) . These two pins are open-drain output pins and do not have the
p-channel drive transistor or weak internal pullup . An external pullup resistor is required to achieve a high-logic level .

11.2.1�GPIO�Direction�Register�Port�2�(PD2)

PD2 is an 8-bit register used to determine the direction of the pins when they are used as GPIO pins . Each pin is inde-
pendently controlled by its direction bit . When PD2 .n (n = 0 to 7) is set to 1, the pin is an output; data in the PO2 .n bit
is driven on the pin . When PD2 .n is cleared to 0, the pin is an input, and allows an external signal to drive the pin . Note
that each port pin has a weak pullup circuit when functioning as an input . The p-channel pullup transistor is controlled
by the PO2 .n bit . If PO2 .n is set to 1, the corresponding weak pullup is turned on; if the PO2 .n bit is cleared to 0, the
weak pullup is turned off and the pin’s input is high impedance . The weak pullup transistor is not available on pins P2 .6
and P2 .7 .

11.2.2�GPIO�Output�Register�Port�2�(PO2)

PO2 is an 8-bit register that controls the output data of a GPIO pin . If the pin is setup to be an output (PD2 .n = 1), the
data in PO2 .n is output on the pin . If the pin is set as an input (PD2 .n = 0), setting PO2 .n to a 1 enables a p-channel
weak pullup, otherwise the pin’s input is high impedance . If the P2 .6 and P2 .7 pins (master I2C port) are driven as an
output, they operate as open-drain outputs . An external pullup resistor is required to achieve a high-logic level .

11.2.3�GPIO�Input�Register�for�Port�2�(PI2)

PI2 is an 8-bit register that contains the data that is applied to the GPIO pins . The PI2 input register contains valid input
data even when the pin is not operating as a GPIO . The reset value for this register is dependent on the logical states
applied to the pins . Note that each pin, except P2 .6 and P2 .7, has a weak pullup circuit when functioning as an input,
and the p-channel pullup transistor is controlled by the PO2 .n bit .

Bit 7 6 5 4 3 2 1 0

Name PD2_7 PD2_6 PD2_5 PD2_4 PD2_3 PD2_2 PD2_1 PD2_0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

Bit 7 6 5 4 3 2 1 0

Name PO2_7 PO2_6 PO2_5 PO2_4 PO2_3 PO2_2 PO2_1 PO2_0

Reset 1 1 1 1 1 1 1 1

Access rw rw rw rw rw rw rw rw

Bit 7 6 5 4 3 2 1 0

Name PI2_7 PI2_6 PI2_5 PI2_4 PI2_3 PI2_2 PI2_1 PI2_0

Reset s s s s s s s s

Access r r r r r r r r

� � Maxim�Integrated� 11-6

MAX31782 User’s Guide

Revision 0; 8/11

11.3�GPIO�Port�6�Register�Descriptions
Port 6 provides seven GPIO pins that are multiplexed with the test access port (TAP), Timer B, and slave I2C port . See
Table 11-1 for more details about the multiplexed functions and how to enable or disable these functions .

Note that SCL and SDA pins can be configured as GPIOs (P6 .6 and P6 .7, respectively) with open drain if needed,
although this is not the typical application . In this case, bits 6 and 7 in the port 6 SFRs control the GPIO functions of
the SCL and SDA pins, respectively . SCL and SDA are open-drain outputs and do not have the p-channel drive tran-
sistor or weak internal pullup . External pullups are required to realize a logic-high . The user should also be aware that
once SCL and SDA are converted to GPIO, they can no longer perform I2C communications . The host cannot talk to
the device through the I2C-compatible slave interface or use the I2C bootloader . See the SECTION 7: I2C-Compatible
Slave Interface for more information .

On device reset, the TAP port is active, allowing for in-circuit debugging and programming . The TAP TDO pin (P6 .3) is
a logic-high output following a device reset . Extra precautions must be taken to ensure that this pin does not cause any
undesirable operations following a reset .

Port 6 also provides GPIO interrupts on all the pins . A GPIO interrupt can be generated when the pin is being operated
as a GPIO, or a special or alternate function . Three additional registers—EIF6, EIE6, and EIES6—are used to control
the GPIO interrupts .

11.3.1�GPIO�Direction�Register�Port�6�(PD6)

PD6 is an 8-bit register used to determine the direction of the pins when they are used as GPIO pins . Each pin is
independently controlled by its direction bit . When PD6 .n (n = 0 to 7 excluding 5) is set to 1, the pin is an output; data
in the PO6 .n bit is driven on the pin . When PD6 .n is cleared to 0, the pin is an input, and allows an external signal to
drive the pin . Note that each port pin except P6 .6 and P6 .7 has a weak pullup circuit when functioning as an input . The
p-channel pullup transistor is controlled by the PO6 .n bit . If PO6 .n is set to 1, the corresponding weak pullup is turned
on; if the PO6 .n bit is cleared to 0, the weak pullup is turned off and the pin’s input is high impedance . The weak pullup
transistor is not available on pins P6 .6 and P6 .7 .

11.3.2�GPIO�Output�Register�Port�6�(PO6)

PO6 is an 8-bit register that controls the output data of a GPIO pin . If the pin is set up to be an output (PD6 .n = 1), the
data in PO6 .n is output on the pin . If the pin is set as an input (PD6 .n = 0), setting PO6 .n to a 1 enables a p-channel
weak pullup; otherwise, the pin’s input is high impedance . If the P6 .6 and P6 .7 pins (slave I2C port) are driven as an
output, they operate as open-drain outputs . An external pullup resistor is required to achieve a high-logic level .

Bit 7 6 5 4 3 2 1 0

Name PD6_7 PD6_6 — PD6_4 PD6_3 PD6_2 PD6_1 PD6_0

Reset 0 0 0 0 0 0 0 0

Access rw rw r rw rw rw rw rw

Bit 7 6 5 4 3 2 1 0

Name PO6_7 PO6_6 — PO6_4 PO6_3 PO6_2 PO6_1 PO6_0

Reset 1 1 1 1 1 1 1 1

Access rw rw r rw rw rw rw rw

� � Maxim�Integrated�� � 11-7

MAX31782 User’s Guide

Revision 0; 8/11

11.3.3�GPIO�Input�Register�for�Port�6�(PI6)

PI6 is an 8-bit register that contains the data that is applied to the GPIO pins . The PI6 input register contains valid input
data even when the pin is not operating as a GPIO . The reset value for this register is dependent on the logical states
applied to the pins . Note that each pin has a weak pullup circuit when functioning as an input and the p-channel pullup
transistor is controlled by the PO6 .n bit .

11.3.4�GPIO�Port�6�External�Interrupt�Edge�Select�Register�(EIES6)

The EIES6 register sets the interrupt edge select to trigger an interrupt on either a rising or falling edge . Setting the
IESP6_n bits to 0 triggers the corresponding interrupt on a positive edge . When these bits are set to 1, the interrupt is
on a negative edge .

11.3.5�GPIO�Port�6�External�Interrupt�Flag�Register�(EIF6)

These bits are set when a negative edge (IESP6 .n = 1) or a positive edge (IESP6 .n = 0) is detected on the P6 .n pin .
Setting any of the bits to 1 generates an interrupt to the CPU if the corresponding interrupt is enabled . These bits remain
set until cleared by software or a reset . These bits must be cleared by software before exiting the interrupt service
routine or another interrupt is generated as long as the bit remains set .

11.3.6�GPIO�Port�6�External�Interrupt�Enable�Register�(EIE6)

Setting any of these bits to 1 enables the corresponding external interrupt . Clearing any of the bits to 0 disables the
corresponding interrupt function .

Bit 7 6 5 4 3 2 1 0

Name PI6_7 PI6_6 — PI6_4 PI6_3 PI6_2 PI6_1 PI6_0

Reset s s 1 s s s s s

Access r r r r r r r r

Bit 7 6 5 4 3 2 1 0

Name IESP6_7 IESP6_6 — IESP6_4 IESP6_3 IESP6_2 IESP6_1 IESP6_0

Reset 0 0 0 0 0 0 0 0

Access rw rw r rw rw rw rw rw

Bit 7 6 5 4 3 2 1 0

Name IFP6_7 IFP6_6 — IFP6_4 IFP6_3 IFP6_2 IFP6_1 IFP6_0

Reset 0 0 0 0 0 0 0 0

Access rw rw r rw rw rw rw rw

Bit 7 6 5 4 3 2 1 0

Name IEP6_7 IEP6_6 — IEP6_4 IEP6_3 IEP6_2 IEP6_1 IEP6_0

Reset 0 0 0 0 0 0 0 0

Access rw rw r rw rw rw rw rw

� �Maxim�Integrated�� �11-8

MAX31782 User’s Guide

Revision 0; 8/11

11.4�GPIO�Code�Example
//set	pin	6.4	as	a	high	output

PD6	|=	0x10;		 //set	direction	PD6.4	to	1	for	an	output

PO6	|=	0x10;		 //set	the	output	PO6.4	high	

//set	pin	6.4	as	a	high-impedance	input

PD6	&=	~0x10;	 //set	direction	PD6.4	to	0	for	input

PO6	&=	~0x10;	 //set	PO6.4	low	to	disable	weak	pullup

//enable	the	pin	6.4	weak	pullup

PD6	&=	~0x10;	 //set	direction	PD6.4	to	0	for	input

PO6	|=	0x10;		 //set	PO6.4	high	to	enable	weak	pullup

� � Maxim�Integrated� 12-1

MAX31782 User’s Guide

Revision 0; 8/11

SECTION 12: TIMER B MODULE

12 .1 Detailed Description . .12-2

12 .1 .1 Auto-Reload Mode . .12-3

12 .1 .2 Up/Down Count with Auto-Reload . .12-4

12 .1 .3 Capture Mode .12-5

12 .1 .4 Clock Output Mode .12-6

12 .1 .5 PWM Output Mode .12-7

12 .1 .5 .1 Up Count PWM Output Mode .12-8

12 .1 .5 .2 Up/Down Count PWM Output Mode .12-9

12 .2 Timer B Register Descriptions .12-10

12 .2 .1 Timer B Control Register (TB0CN) .12-10

12 .2 .2 Timer B Value Register (TB0V) .12-11

12 .2 .3 Timer B Capture/Reload Register (TB0R) .12-11

12 .2 .4 Timer B Compare Register (TB0C) .12-11

12 .3 Timer B Code Examples .12-12

12 .3 .1 Auto-Reload Mode . .12-12

12 .3 .2 Clock Output Mode .12-12

12 .3 .3 PWM Output Mode .12-12

LIST OF TABLES

Table 12-1 . Timer B Pins .12-2

Table 12-2 . Timer B Mode Summary .12-2

Table 12-3 . PWM Output Modes .12-7

LIST OF FIGURES

Figure 12-1 . Auto-Reload Mode Block Diagram .12-3

Figure 12-2 . Up/Down Count with Auto-Reload Mode Block Diagram .12-4

Figure 12-3 . Capture Mode Block Diagram . .12-5

Figure 12-4 . Clock Output Mode Block Diagram .12-6

Figure 12-5 . PWM Output Mode Block Diagram .12-7

Figure 12-6 . TBB Pin Waveform in Up Count PWM Output Mode .12-8

Figure 12-7 . TBB Pin Waveform in Up/Down Count PWM Output Mode .12-9

This section contains the following information:

� �Maxim�Integrated� 12-2

MAX31782 User’s Guide

Revision 0; 8/11

SECTION 12: TIMER B MODULE
The MAX31782 provides one Timer B module that can be configured to provide different timer, counter, clock, or PWM
functions . The Timer B uses the TBB and TBA pins, which are also used for JTAG and GPIO operation . Table 12-1
details these pins .

Table�12-1.�Timer�B�Pins

Table�12-2.�Timer�B�Mode�Summary

12.1�Detailed�Description
The Timer B is a 16-bit programmable module that supports input clock prescaling and set/reset/toggle PWM output
control functionality . Another distinguishing characteristic of Timer B is that its count ranges from 0000h to the value
stored in the 16-bit capture/reload register (TBR) instead of FFFFh as in some timers .

The possible Timer B operating modes and related control bits are shown in Table 12-2 . A complete description of each
mode is contained in the subsequent sections .

All timer operation and functionality is set using the Timer B control register, TB0CN . Three other registers are used to
hold the current timer/counter value (TB0V), the capture/reload value (TB0R), and a compare value (TB0C) .

In all modes of operation, the timer is enabled by setting the Timer B run control bit (TRB) in the Timer B control register
to 1 . If this bit is cleared to 0 (reset default condition), no timer activity is possible .

When the Timer B is operated as a timer (i .e ., it counts scaled system clocks), the TBPS[2:0] bits in the timer control
register determine the factor by which the active system clock is divided (prescaled) before being counted by the timer .
Other relevant control bits are described in the following mode descriptions . A complete listing of the Timer B registers
and bits with their effects on timer operation are given in 12.2 Timer B Register Descriptions .

The Timer B pins, TBA and TBB, are used for GPIO and JTAG, respectively, by default . The Timer B functionality of
these pins is enabled through the TB0CN register . The following sections detail the TB0CN configurations required
depending on the desired Timer B function . To use the TBB pin, the JTAG port must also be disabled by setting the
TAP bit in the SC register to 0 .

TIMER�B�PIN MAX31782�PIN�NUMBER GPIO�PIN JTAG�PIN

TBA 33 P6 .4 —

TBB 35 P6 .2 TMS

TIMER�B�OPERATIONAL�
MODE

TB0CN�REGISTER�BIT�SETTINGS

TBCS:TBCR TBOE DCEN EXENB C/TB CP/RLB OPTIONAL�CONTROL

Auto-Reload 00 0 0 0 X 0

Auto-Reload Using TBB Pin 00 0 0 1 X 0

Capture Using TBB Pin 00 0 0 1 X 1

Up/Down Count Using TBB Pin 00 0 1 0 X 0

Up-Count PWM/Output Control ≠00 X 0 X X 0

Up/Down PWM/Output Control ≠00 X 1 X X 0

— — 0 X X 1 X Input Clock = TBA Pin

Clock Output on TBA Pin — 1 X X 0 0

� Maxim�Integrated�� � 12-3

MAX31782 User’s Guide

Revision 0; 8/11

12.1.1�Auto-Reload�Mode
The 16-bit auto-reload mode of Timer B is established by clearing the CP/RLB bit to 0 . In this mode, the timer performs
a simple 16-bit timer or counter function that is reset to 0000h when a match between the Timer B count value register
(TB0V) and the Timer B capture/reload register (TB0R) occurs . A block diagram of auto-reload mode is illustrated in
Figure 12-1 . If the C/TB bit is a logic 0, the timer’s input clock is a prescaled system clock . When C/TB is a logic 1,
pulses on the TBA pin are counted . As in all modes, counting or timing is enabled or disabled with the TRB bit .

When enabled in auto-reload mode, the Timer B begins counting up from the current value contained in the TB0V
register . When the value in the TB0V register reaches the value in the capture/reload register TB0R, the TFB flag is set
to 1, which can generate an interrupt if enabled . Also when this match is made, the timer reloads the TB0V register with
0000h and continues timing or counting from 0000h . The reload value contained in the TB0R register is preloaded by
software . The TB0R register cannot be used for the capture function while also performing auto-reload .

While in auto-reload mode, the Timer B can also be forced to reload the TB0V register with 0000h using the TBB pin . If
the EXENB bit is set to 1, a 1 to 0 transition (falling edge) on the TBB pin causes a reload . If the EXENB bit is cleared
to 0, the TBB pin is ignored .

Figure 12-1. Auto-Reload Mode Block Diagram

SYSTEM
CLOCK

CLOCK PRESCALER
TBPS[2:0]

CLK

RELOAD

TBA PIN

TRB

TBB PIN

EXENB

FALLING
EDGE

15 0

15 0

TB0R

COMPARE

TB0V

0000h

EXFB = 1

TFB = 1

ETB

TIMER B
INTERRUPT

0

1

C/TB

� � Maxim�Integrated� 12-4

MAX31782 User’s Guide

Revision 0; 8/11

12.1.2�Up/Down�Count�with�Auto-Reload
The 16-Bit up/down count auto-reload mode is enabled by clearing the capture/reload bit (CP/RLB) to 0 and setting the
down count enable bit (DCEN) to 1 . This mode is illustrated in Figure 12-2 . When DCEN is set to 1 the Timer B either
counts up or down, depending upon the state of the TBB pin . If the TBB pin is high, the Timer B counts up and, if the
TBB pin is low, the Timer B counts down . When DCEN = 0, the Timer B only counts up .

When counting up and an overflow occurs (a match between the value in the TB0V and TB0R register), the TB0V reg-
ister reloads with a value of 0000h and continues counting . When the timer is counting down and an underflow occurs
(the TB0V register reaches 0000h), the TB0V register is reloaded with the value in the TB0R register and downward
counting continues .

Note that in this mode of operation an overflow or underflow of the timer is provided to an edge-detection circuit as well
as to the TFB bit . This edge-detection circuit toggles the EXFB bit on every overflow or underflow . Therefore, the EXFB
bit behaves as a 17th bit of the counter, and can be used as such .

Figure 12-2. Up/Down Count with Auto-Reload Mode Block Diagram

SYSTEM
CLOCK

CLOCK PRESCALER
TBPS[2:0]

CLK

TBA PIN

TRB

TBB PIN
COUNT DIRECTION (1 = UP, 0 = DOWN)

(DOWN-COUNTING RELOAD VALUE)

(UP-COUNTING RELOAD VALUE)

TFB = 1

RISE/FALL
EDGE

TOGGLE
EXFB

ETB

TIMER B
INTERRUPT

TB0R

TB0V

0000h

15 0

15 0

0

1

C/TB

� � Maxim�Integrated� 12-5

MAX31782 User’s Guide

Revision 0; 8/11

12.1.3�Capture�Mode
The Timer B 16-bit capture mode is configured by setting the CP/RLB bit to 1 . A block diagram of this mode is shown
in Figure 12-3 . In capture mode, the Timer B can be clocked either by a prescaled version of the system clock or fall-
ing edges of the TBA pin . When the timer is enabled in capture mode, it begins counting up from the value contained
in the TB0V register until reaching an overflow state . An overflow state is when the TB0V register changes from FFFFh
to 0000h . When this happens, the timer overflow flag (TFB), is set, which can generate an interrupt if enabled . After an
overflow the timer continues counting upward . This counting is repeated without processor intervention until the timer
is disabled (TRB = 0) .

The current value in TB0V is captured and copied into the capture/reload register (TB0R) when a falling edge occurs on
the TBB pin and the external enable bit (EXENB) of the control register is set to 1 . The EXFB flag is set when a capture
occurs, which can generate an interrupt if enabled . If the EXENB bit is cleared to 0, transitions on the TBB pin do not
cause a capture event .

Figure 12-3. Capture Mode Block Diagram

SYSTEM
CLOCK

CLOCK PRESCALER
TBPS[2:0]

FALLING
EDGE

EXFB = 1

CLK 15 0
TB0V

TB0R

TFB = 1

15 0

CAPTURE
TBA PIN

TRB

TBB PIN

EXENB

0

1

C/TB

ETB

TIMER B
INTERRUPT

� � Maxim�Integrated� 12-6

MAX31782 User’s Guide

Revision 0; 8/11

12.1.4�Clock�Output�Mode
The Timer B can be configured to drive a clock output on the TBA pin as shown in Figure 12-4 . For the timer to operate
in this mode, the capture/reload select bit (CP/RLB) and the counter/timer select bit (C/TB) must be cleared to 0 and the
Timer B output enable bit (TBOE) must be set to 1 . In this mode, the DCEN bit has no effect . The clock signal output is
a 50% duty cycle square wave with a frequency given by the equation:

TBA OUTPUT FREQUENCY =
TIMER B Clock
2 (TB0R 1)× +

where Timer B clock is the prescaled version of the system clock . The prescaler is set using the TBPS[2:0] bits . In clock
output mode, the setting of the TFB overflow flag does not cause an interrupt .

For example, if the Timer B clock is 1MHz and the TB0R register is set to 0004h, the TBA output frequency is 100kHz .

When the Timer B is operating in clock output mode, it can also monitor and generate an interrupt when falling edges
occur on the TBB pin . This is enabled by setting the EXENB and ETB bits .

Figure 12-4. Clock Output Mode Block Diagram

SYSTEM
CLOCK

FALLING
EDGE

CLOCK PRESCALER
TBPS[2:0]

TRB

TB0R

TB0V

0000h

COMPARE

DIVIDE BY 2

TFB = 1

TIMER B
INTERRUPT

EXFB = 1

TBOE

ETB

CLK

015

015

C/TB

TBA PIN

EXENB

TBB PIN

� � Maxim�Integrated� 12-7

MAX31782 User’s Guide

Revision 0; 8/11

Figure 12-5. PWM Output Mode Block Diagram

12.1.5�PWM�Output�Mode
The PWM output mode is enabled when the Timer B is enabled (TRB = 1) and either the TBCS or TBCR bit is set to 1 .
Table 12-3 describes how these bits determine the specific PWM operation . When operating as a PWM output, the
Timer B can provide up to 16-bit resolution of the PWM frequency or duty cycle . The counter in the Timer B can operate
as count up only, or count up/down .

Figure 12-5 shows a block diagram of the Timer B module when it is operating in PWM output mode . The TBB input
function (EXENB = 1) and the PWM/output control function (TBCS or TBCR ≠ 0) can be enabled at the same time . In
this configuration, the detection of a falling edge on the TBB pin results in the setting of the EXFB interrupt flag, but
does not force an auto-reload .

A timed setting or clearing of the TBB pin can also be generated without the need for the CPU to time the event or use
GPIO . This is accomplished by setting the compare register (TB0C) to a value greater than the reload register (TB0R) .
This functionality is illustrated in Figure 12-6 and Figure 12-7 .

Table�12-3.�PWM�Output�Modes

TBCS:TBCR PWM�MODE TBB�PIN�FUNCTION
INITIAL�
STATE

NOTES

00 None None (Disabled) No change

01 Reset Reset on TB0C Match, Set on 0000h Low Will not output a 0% duty cycle .

10 Set Set on TB0C Match, Reset on TB0R Match High Will not output a 100% duty cycle .

11 Toggle Toggle on TB0C Match No change

SYSTEM
CLOCK

CLOCK PRESCALER
TBPS[2:0]

CLK

RELOAD

TBA PIN

TRB

EXENB

FALLING
EDGE

15 0

15 0

COMPARE

TB0V

0000h

EXFB = 1

TFB = 1

ETB

TIMER B
INTERRUPT

0

1

C/TB

TB0R

TB0C TBCS
TBCR

TBB PIN

� � Maxim�Integrated� 12-8

MAX31782 User’s Guide

Revision 0; 8/11

12.1.5.1�Up�Count�PWM�Output�Mode
When operating in PWM output mode and configured for up count (DCEN = 0), the value in TB0V is incremented until it
reaches the reload value, TB0R . At this point, TB0V is reloaded with 0000h, the TFB flag is set (which can generate an
interrupt if enabled), and counting continues . Figure 12-6 illustrates the PWM waveforms when the Timer B is operating
in up count PWM output mode . The period of the PWM waveform is set by the value in the TB0R register . The set and
reset modes provide similar functionality . The formulas for period and duty cycle are:

PWM PERIOD = (TB0R + 1) × TIMER B CLOCK PERIOD

Duty Cycle in Set Mode =
TB0R TB0C

TB0R 1
−
+

Duty Cycle in Reset Mode =
TB0C

TB0R 1+

The toggle mode generates a 50% duty-cycle waveform if the TB0C register remains fixed with the Timer B running .
The period of the waveform is:

PERIOD = 2 × (TB0R + 1) × TIMER B CLOCK PERIOD

Figure 12-6. TBB Pin Waveform in Up Count PWM Output Mode

TB0C > TB0R

TB0C < TB0R

0000

TB
0V

SET MODE

RESET MODE

TOGGLE MODE

SET MODE

RESET MODE

TOGGLE MODE

TB0R

TB0C < TB0R

TB0C > TB0R

� � Maxim�Integrated�� � 12-9

MAX31782 User’s Guide

Revision 0; 8/11

12.1.5.2�Up/Down�Count�PWM�Output�Mode
The Timer B can also operate in an up/down count configuration when in PWM output mode by setting DCEN = 1 . The
timer counts upward until it reaches the value in the reload register (TB0R) . On the next cycle, it reverses the count
direction and starts counting down . When the TB0V counter reaches 0000h, it again reverses direction and begins
counting up .

When operating in an up/down count configuration and either set or reset mode, the PWM effectively allows 17-bit
resolution . In set mode the duty cycle is always less than 50%, and in reset mode the duty cycle is always greater than
50% . The toggle mode provides a center-aligned 16-bit PWM with twice the period of the up counting PWM output
mode . Figure 12-7 illustrates the PWM waveforms when the Timer B is operating in up/down count PWM output mode .
The up/down count PWM output period and duty cycle are calculated as follows:

PERIOD = 2 × TB0R × TIMER B CLOCK PERIOD

Duty Cycle in Set Mode =
TB0R TB0C

2 TB0R
+

×

Duty Cycle in Reset Mode =
TB0C

2 TB0R×

Duty Cycle in Toggle Mode =
TB0R TB0C

TB0R
−

Figure 12-7. TBB Pin Waveform in Up/Down Count PWM Output Mode

TB0C > TB0R

TB0C < TB0R

0000h

TB
0V

SET MODE

RESET MODE

TOGGLE MODE

SET MODE

RESET MODE

TOGGLE MODE

TB0R

TB0C < TB0R

TB0C > TB0R

� �Maxim�Integrated� 12-10

MAX31782 User’s Guide

Revision 0; 8/11

12.2�Timer�B�Register�Descriptions
The following peripheral registers are used to control the Timer B timer and counter functions . Addresses of registers
are given as “Mx[yy],” where x is the module number (from 0 to 5 decimal) and yy is the register index (from 00h to
1Fh hexadecimal) .

12.2.1�Timer�B�Control�Register�(TB0CN)
Register Address: M0[0Dh]

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Name C/TB — — TBCS TBCR TBPS2 TBPS1 TBPS0 TFB EXFB TBOE DCEN EXENB TRB ETB CP/RLB

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

BIT NAME DESCRIPTION

15 C/TB

Counter/Timer Select . This bit determines whether Timer B functions as a timer or counter . Setting
this bit to 1 configures the Timer B to count negative transitions on the TBA pin . Clearing this bit to 0
configures the Timer B to function as a timer . The speed of the Timer B when operating as a timer is
determined by the TBPS[2:0] bits .

14:13 — Reserved . The user should not write to these bits .

12:11 TBCS, TBCR
TBB Pin Output Set/Reset Mode Bits . These mode bits define whether the PWM mode output function
is enabled on the TBB pin and what compare mode output function is in effect . Note that the TBB pin
still has certain input functionality when the PWM output function is enabled .

10:8 TBPS[2:0]

Timer B Clock Prescaler Bits . These bits select the clock prescaler applied to the system clock,
which is then used as the Timer B clock . The TBPS[2:0] bits should be configured by the user when
the timer is stopped (TRB = 0) . While hardware does not prevent changing the TBPS[2:0] bits when
the timer is running, the resultant behavior is nondeterministic .

TBPS[2:0] TIMER�INPUT�CLOCK

000 Sysclk

001 Sysclk/4

010 Sysclk/16

011 Sysclk/64

100 Sysclk/256

101 Sysclk/1024

11x Sysclk

7 TFB

Timer B Overflow Flag . This bit is set when Timer B overflows or reaches TB0R and is reloaded to
0000h . The TFB flag is also set when TB0V is equal to 0000h in down-count mode . The setting of this
flag will cause an interrupt if enabled . This flag must be cleared by software . In clock output mode
(TBOE = 1), the TFB flag is set on an overflow; however, the TBOE = 1 condition prevents this flag
from causing an interrupt when ETB = 1 .

6 EXFB

External Timer B Trigger Flag . When the Timer B is configured as a Timer (C/TB = 0) and operating in the
following modes:
• Capture Mode (CP/RLB = 1)
• Auto-Reload Mode (CP/RLB = DCEN = 0)
• PWM Mode (CP/RLB = 1 and TBCS:TBCR ≠ 00)
A negative transition on the TBB pin causes the EXFB flag to be set if EXENB = 1 . This flag is set when
a negative edge is detected, even if the Timer B is disabled (TRB = 0) . The setting of this flag causes an
interrupt if enabled . If set by a negative transition, this flag must be cleared by software . When operating
in up/down count with auto-reload (CP/RLB = 0, DCEN = 1, and TBCS:TBCR = 00), the EXFB flag toggles
whenever the Timer B overflows or underflows . Overflow/underflow condition is described in TFB bit
description . In this mode, EXFB can be used as the 17th timer bit and does not cause an interrupt .

� �Maxim�Integrated� 12-11

MAX31782 User’s Guide

Revision 0; 8/11

12.2.2�Timer�B�Value�Register�(TB0V)
Register Address: M0[0Bh]

The Timer B value register, TB0V, holds the 16-bit value of the Timer B counter or timer . Enabling or disabling the Timer
B with the TRB bit does not reset the TB0V register . The TB0V register must be cleared by software . This register is
cleared to 0000h on all forms of reset and has unrestricted read/write access .

12.2.3�Timer�B�Capture/Reload�Register�(TB0R)
Register Address: M0[07h]

The Timer B capture/reload register, TB0R, is a 16-bit register that has two different functions depending on the Timer
B mode of operation . When operating in capture mode, the current value in TB0V is copied to TB0R when a capture
event occurs . When operating as a timer or counter, a reload of the TB0V register occurs when TB0V matches TB0R .
This register is cleared to 0000h on all forms of reset and has unrestricted read/write access .

12.2.4�Timer�B�Compare�Register�(TB0C)
Register Address: M0[06h]

The Timer B compare register, TB0C, is a 16-bit register that is used as a comparison to the TB0V register . Depending
upon the mode of operation, the Timer B takes different actions when a match between TB0V and TB0C occurs . This
register is cleared to 0000h on all forms of reset and has unrestricted read/write access .

BIT NAME DESCRIPTION

5 TBOE
Timer B Output Enable . Setting this bit to 1 enables the clock output function on the TBA pin if C/TB
= 0 . Clearing this bit to 0 allows the TBA pin to function as either a standard GPIO pin or a counter
input for the Timer B .

4 DCEN

Down-Count Enable . In the compare modes, the DCEN bit controls whether the timer counts up and
resets (DCEN = 0), or counts up and down (DCEN = 1) . The DCEN bit only affect these two modes:
• Up/down count with auto-reload: When DCEN = 1, the TBB pin controls the direction that the Timer
B counts . The Timer B counts up if the TBB pin is 1 and counts down if the TBB pin is 0 . Clearing this
bit to 0 causes Timer B to count up only .
• Up/down count PWM output mode: When DCEN = 1, the up/down count control of Timer B is con-
trolled internally based upon the count in relation to the register settings .

3 EXENB

Timer B External Enable . Setting this bit to 1 enables the capture/reload function on the TBB pin for
a negative transition . A reload results in TB0V being reset to 0000h . Clearing this bit to 0 causes the
Timer B to ignore all external events on TBB pin . When operating in PWM output mode, enabling the
TBB input function (EXENB = 1) allows PWM output negative transitions to set the EXFB flag; how-
ever, no reload occurs as a result of the external negative-edge detection .

2 TRB
Timer B Run Control . This bit enables Timer B operation when set to 1 . Clearing this bit to 0 halts the
Timer B operation and preserves the current count in TB0V .

1 ETB Enable Timer B Interrupt . Setting this bit to 1 enables interrupts from the TFB or EXFB flags .

0 CP/RLB
Capture/Reload Select . Setting this bit to 1 enables capture mode . Clearing this bit to 0 causes an
auto-reload to occur when a Timer B overflow or a falling edge on TBB (EXENB = 1) is detected . It is
not intended that the Timer B compare functionality should be used when operating in capture mode .

� �Maxim�Integrated� 12-12

MAX31782 User’s Guide

Revision 0; 8/11

12.3�Timer�B�Code�Examples

12.3.1�Auto-Reload�Mode
Creating a 10ms interrupt (10ms at 4MHz = 40,000 clock cycles):

TB0R	=	40000;		 	 	 //set	the	Reload	Register

TB0V	=	0x0000;			 	 //clear	the	Value	Register

TB0CN_bit.CPnRLB	=	0;		 //clear	for	auto	reload

TB0CN_bit.ETB	=	1;		 	 //enable	the	interrupt

TB0CN_bit.TRB	=	1;		 	 //enable	the	Timer	B	operation

12.3.2�Clock�Output�Mode
Creating a 100kHz clock on the TBA pin:

TB0CN_bit.CPnRLB	=	0;		 //clear	for	reload

TB0CN_bit.TBPS	=	1;		 	 //prescaler:	divide	sysclk/4	for	1MHz	Timer	B	Clock

TB0R	=	4;		 	 	 //set	for	100	kHz	output	frequency

TB0CN_bit.TBOE	=	1;		 	 //enable	output	on	TBA	pin

TB0CN_bit.TRB	=	1;		 	 //enable	timer	operation

12.3.3�PWM�Output�Mode
Creating a 40% duty cycle 100kHz signal:

TB0CN_bit.TBPS	=	0;		 	 //Timer	B	input	clk	=	sysclk

TB0R	=	39;		 	 	 //PWM	period	=	40	sysclks

TB0C	=	16;		 	 	 //duty	cycle	=	16/40

TB0CN_bit.TBCR	=	1;		 	 //set	to	reset	mode

TB0CN_bit.TBCS	=	0;		 	 //set	to	reset	mode

TB0CN_bit.TRB	=	1;		 	 //enable	Timer	B

� � Maxim�Integrated� 13-1

MAX31782 User’s Guide

Revision 0; 8/11

SECTION 13: SUPPLY VOLTAGE MONITOR

The MAX31782 provides features to allow monitoring of its power supply . The supply voltage monitor (SVM) monitors
the VDD power supply and can alert the processor through an interrupt if VDD falls below a programmable threshold .

The MAX31782 provides the following power-monitoring features:

• SVM compares VDD against a programmable threshold from approximately 2 .7V to 5 .3V .

• Optional SVM interrupt can be triggered when VDD drops below the programmed threshold .

• SVM interrupt can be used to trigger exit from stop mode .

13.1�Supply�Voltage�Monitor�Register�(SVM)�Descriptions
The peripheral register SVM, located in Module 1, Index 9, controls the supply voltage monitor .

13.1.1�Supply�Voltage�Monitor�Register�(SVM)

*SVTH[3:0] bits can only be written when the SVM is not running (SVMEN = 0).

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Name — — — — SVTH3 SVTH2 SVTH1 SVTH0 — — — SVMSTOP SVMI SVMIE SVMRDY SVMEN

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Access r r r r rw* rw* rw* rw* r r r rw rw rw r rw

BIT NAME DESCRIPTION

15:12 — Reserved . The user should not write to these bits .

11:8 SVTH[3:0]

Supply Voltage Threshold Bits [3:0] . These bits are used to select a user-defined supply voltage
threshold . If VDD is below this threshold, the SVMI bit is set and an interrupt can be generated if
enabled . The threshold level can be adjusted from 2 .3V to 5 .3V in 0 .2V increments . The default
value is 00h (2 .3V) .

Supply Voltage Monitor Threshold = 2 .3V + SVTH[3:0] x 0 .2V
Note that the SVTH[3:0] bits can only be modified when SVMEN = 0 . Writing to these bits is ignored
if SVMEN = 1 . SVM thresholds of 2 .3V and 2 .5V have no actual use because the MAX31782 enters
brownout at 2 .5V .

7:5 — Reserved . The user should not write to these bits .

4 SVMSTOP

Stop Mode Supply Voltage Monitor Enable . This bit controls the operation of the SVM when the
CPU is in stop mode .
0 = The SVM is disabled during stop mode .
1 = The SVM is enabled during stop mode (if SVMEN = 1) .

3 SVMI

Supply Voltage Monitor Interrupt . This bit is set to 1 when the VDD supply voltage falls below the
threshold defined by SVTH[3:0] . If SVMIE = 1, setting this bit to 1 by either hardware or software
triggers an interrupt . This bit must be cleared by software, but if VDD is still below the threshold, the
bit is immediately set again by hardware .

2 SVMIE
Supply Voltage Monitor Interrupt Enable . Setting this bit to 1 allows an interrupt to be generated (if
not otherwise masked) when SVMI is set to 1 . Clearing this bit to 0 disables the SVM interrupt .

1 SVMRDY

Supply Voltage Monitor Ready . This read-only status bit indicates whether the SVM is ready for use .
0 = The SVM is disabled (SVMEN = 0), stop mode was entered with SVMSTOP = 0, or the SVM is
in the process of powering up .
1 = The SVM is enabled and ready for use .

0 SVMEN
Supply Voltage Monitor Enable . Setting this bit to 1 enables the SVM and begins monitoring VDD
against the programmed (SVTH[3:0]) threshold . After SVMEN is set, SVMRDY is set in approximate-
ly 20Fs . Clearing this bit to 0 disables the SVM .

� � Maxim�Integrated� 14-1

MAX31782 User’s Guide

Revision 0; 8/11

SECTION 14: HARDWARE MULTIPLIER

14 .1 Hardware Multiplier Organization .14-2

14 .2 Hardware Multiplier Controls .14-3

14 .3 Register Output Selection .14-3

14 .3 .1 Signed-Unsigned Operand Selection .14-3

14 .3 .2 Operand Count Selection .14-3

14 .4 Hardware Multiplier Operations .14-3

14 .4 .1 Accessing the Multiplier .14-4

14 .5 Hardware Multiplier Peripheral Registers .14-5

14 .5 .1 Multiplier Control Register (MCNT) .14-6

14 .5 .2 Multiplier Operand A Register (MA) .14-7

14 .5 .3 Multiplier Operand B Register (MB) .14-7

14 .5 .4 Multiplier Accumulator 2 Register (MC2) .14-7

14 .5 .5 Multiplier Accumulator 1 Register (MC1) .14-7

14 .5 .6 Multiplier Accumulator 0 Register (MC0) .14-7

14 .5 .7 Multiplier Read Register 1 (MC1R) .14-8

14 .5 .8 Multiplier Read Register 0 (MC0R) .14-8

14 .6 Hardware Multiplier Examples .14-8

LIST OF TABLES

Table 14-1 . Hardware Multiplier Operations .14-4

Table 14-2 . Hardware Multiplier Registers .14-5

LIST OF FIGURES

Figure 14-1 . Multiplier Organization . .14-2

This section contains the following information:

� � Maxim�Integrated� 14-2

MAX31782 User’s Guide

Revision 0; 8/11

SECTION 14: Hardware Multiplier
The hardware multiplier module can be used by the MAX31782 to support high-speed multiplications . The hardware
multiplier module is equipped with two 16-bit operand registers, a 32-bit read-only result register, and an accumulator of
48-bit width . The multiplier can complete a 16-bit x 16-bit multiply-and-accumulate/subtract operation in a single cycle .
The hardware multiplier module supports the following operations without interfering with the normal core functions:

• Signed or Unsigned Multiply (16-bit x 16-bit)

• Signed or Unsigned Multiply-Accumulate (16-bit x 16-bit)

• Signed or Unsigned Multiply-Subtract (16-bit x 16-bit)

• Signed Multiply and Negate (16-bit x 16-bit)

14.1�Hardware�Multiplier�Organization
The hardware multiplier consists of two 16-bit, parallel-load operand registers (MA, MB), a read-only result register
formed by two parallel 16-bit registers (MC1R and MC0R), an accumulator, which is formed by three 16-bit parallel
registers (MC2, MC1, and MC0), and a status/control register (MCNT) . Figure 14-1 shows a block diagram of the hard-
ware multiplier .

Figure 14-1. Multiplier Organization

MBMA

MC0MC1MC2

MULTIPLIER

0015 15

015015

OVERFLOW

SUS

MMAC

MSUB

OPCS

SQU

CLD
MCW

15015 150 0

MC1R MC0R

M
CN

T

� � Maxim�Integrated�� � 14-3

MAX31782 User’s Guide

Revision 0; 8/11

14.2�Hardware�Multiplier�Controls
The selection of operation to be performed by the multiplier is determined by four control bits in the MCNT register: SUS,
MSUB, MMAC, and SQU . The number of operands that must be loaded to trigger the specified operation is dictated
by the OPCS bit setting, except when the square function is enabled (SQU = 1) . Enabling the square function implicitly
defines that only a single operand (either MA or MB) needs to be loaded to trigger the square operation, independent
of the OPCS bit setting . The MCNT register bits must be configured to select the desired operation and operand count
prior to loading the operand(s) to trigger the multiplier operation . Any write to MCNT automatically resets the operand
load counter of the multiplier, but does not affect the operand registers, unless such action is requested using the Clear
Data Registers (CLD) control bit . Once the desired operation has been specified via the MCNT register bits, loading
the prescribed number of operands triggers the respective multiply, multiply-accumulate/subtract or multiply-negate
operation .

14.3�Register�Output�Selection
The Hardware Multiplier implements the MC Register Write Select (MCW) control bit so that writing of the result to the
MC2:MC0 registers can be blocked to preserve the MC registers (accumulator) . When the MCW bit is configured to
logic 1, the result for the given operation is not written to the MC registers . When the MCW bit is configured to logic 0, the
MC registers are updated with the result of the operation . The MC1R, MC0R read-only register pair are updated inde-
pendent of the MCW bit setting . This register pair always reflects the output that would normally be placed in MC1:MC0,
given that MCW = 1 or MMAC = 0 . When MCW = 0 and MMAC = 1, the MC1R:MC0R content may not match the
MC1:MC0 register content, but it will be predictable and may be useful in certain situations . See Table 14-1 for details .

14.3.1�Signed-Unsigned�Operand�Selection
The operands can be either signed or unsigned numbers, but the data type must be defined by the user software via
the Signed-Unsigned (SUS) bit prior to triggering the operation . For an unsigned operation, the Signed-Unsigned bit
(SUS) in the MCNT register must be set to 1; for a signed operation, the SUS bit must be cleared to 0 . The multiplier
treats unsigned numbers as absolute magnitude . For a 16-bit positional binary number, this represents a value in the
range 0 to 216 - 1 (FFFFh) . The signed number representation is a two’s-complement value, where the most significant
bit is defined as a sign bit . The range of a 16-bit two’s-complement number is -2(16-1) (8000h) to +2(16-1) - 1 (7FFFh) .
The product of any signed operation will be sign extended before being stored or accumulated/subtracted into the MC
registers . The SUS bit should always be configured to logic 0 (i .e ., signed operands) for the multiply-negate operation .
Attempting an unsigned multiply-negate operation results in incorrect results and setting of the OF bit . Modifying the
operand data type selection via the SUS bit does not alter the contents of the MC registers . The MC registers are read/
write accessible and can be modified by user code when necessary .

14.3.2�Operand�Count�Selection
The OPCS bit allows selection of single operand or two operands operation for the multiply and multiply-accumulate/
subtract operations . When the OPCS bit is cleared to 0, the multiply or multiply-accumulate/subtract operation estab-
lished by the SUS, MSUB, and MMAC bits is triggered once two operands are loaded, one to each of the MA and MB
registers . When OPCS is set to 1, the operation commences once data is loaded to either MA or MB . The OPCS bit is
ignored when the square operation is enabled (SQU), since loading of data to the MA or MB register actually writes to
both registers .

14.4�Hardware�Multiplier�Operations
The control bits, which specify data type (SUS), operand count (OPCS or SQU), and destination control (MCW), have
already been described . However, there are two additional MCNT register bits that serve to define the Hardware
Multiplier operation . The multiply-accumulate/subtract and multiply-negate operations are enabled by the Multiply-
Accumulate Enable (MMAC) and Multiply Negate (MSUB) bits in the MCNT register . When the MMAC bit is set to 1, the
multiplier performs a multiply-accumulate (if MSUB = 0) or a multiply-subtract (if MSUB = 1) . If MMAC is configured to
0, the multiplier result is not accumulated or subtracted, but can be stored directly (if MSUB = 0) or negated (if MSUB
= 1) before storage . The multiply-negate operation (MMAC = 0, MSUB = 1) is only allowable for signed data operands
(SUS = 0) . For unsigned multiply-accumulate/subtract operations, the OF bit is set when a carry-out/borrow-in from the

� �Maxim�Integrated� 14-4

MAX31782 User’s Guide

Revision 0; 8/11

most significant bit of the MC register occurs . For a signed two’s-complement multiply-accumulate/subtract operations,
the OF bit is set when the carry-out/borrow-in from the most significant magnitude position of the MC register is differ-
ent from the carryout/

borrow-in of the sign position of the MC register . Since there is no overflow condition for multiply and multiply-negate
operations, the OF bit is always cleared for these operations with one exception . The OF bit will be set to logic 1 if an
unsigned multiply-negate (invalid operation) is requested . Table 14-1 shows the operations supported by the multiplier
and associated MCNT control bit settings .

14.4.1�Accessing�the�Multiplier
There are no restrictions on how quickly data is entered into the operand registers or the order of data entry . The only
requirement to do a calculation is to perform the loading of MA and/or MB registers having specified data type and
operation in the MCNT register . The multiplier keeps track of the writes to the MA and MB registers, and starts calcula-
tion immediately after the prescribed number of operands is loaded . If two operands are specified for the operation, the
multiplier waits for the second operand to be loaded into the other operand register before starting the actual calcula-
tion . If for any reason software needs to reload the first operand, it should either reload that same operand register or
use the CLD bit in the MCNT register to reinitialize the multiplier; otherwise, loading data to another operand register
triggers the calculation . The CLD bit is a self-clearing bit that can be used for multiplier initialization . When it is set, it
clears all data registers and the OF bit to zero and resets the multiplier operand write counter .

The specified hardware multiplier operation begins when the final operand(s) is loaded and will complete in a single
cycle . The read-only MC1R, MC0R result registers can be accessed in the very next cycle unless accumulation/subtrac-
tion with MC2:0 is requested (MCW = 0 and MMAC = 1), in which case, one cycle is required so that stable data can be
read . When MCW = 0, the MC2:0 registers always require one wait cycle before the operation result is accessible . The
single wait cycle needed for updating the MC2:0 registers with a calculated result does not prevent initiating another
calculation . Back-to-back operations can be triggered (independent of data type and operand count) without the need
of wait state between the loadings of operands .

Table�14-1.�Hardware�Multiplier�Operations
MCW:MSUB:MMAC OPERATION MC2 MC1 MC0 MC1R:MC0R OF�STATUS

000 Multiply MA*MB MA*MB No

001 Multiply-Accumulate MC+(MA*MB)
32lsbits of

(MC+2*(MA*MB))
Yes

010 Multiply-Negate (SUS = 0 only) -(MA*MB) -(MA*MB) No

011 Multiply-Subtract MC-(MA*MB)
32lsbits of

(MC-2*(MA*MB))
Yes

100 Multiply MC2 MC1 MC0 MA*MB No

101 Multiply-Accumulate MC2 MC1 MC0 32lsbits of (MC+(MA*MB)) No

110 Multiply-Negate (SUS = 0 only) MC2 MC1 MC0 -(MA*MB) No

111 Multiply-Subtract MC2 MC1 MC0 32lsbits of (MC-(MA*MB)) No

� � Maxim�Integrated� 14-5

MAX31782 User’s Guide

Revision 0; 8/11

Table�14-2.�Hardware�Multiplier�Registers

14.5�Hardware�Multiplier�Peripheral�Registers
The hardware multiplier registers are detailed in the following sections . Addresses of registers are given as “Mx[yy],”
where x is the module number (from 0 to 5 decimal) and yy is the register index (from 00h to 1Fh hexadecimal) .

REGISTER ADDRESS FUNCTION

MCNT M5[00h]
Multiplier Control Register . Selects operation, data type, operand count, hardware square
function, and write option on the MC register . Also contains the overflow flag and the clear
control for operand registers and accumulator .

MA M5[01h]
Multiplier Operand A Register . Used by the user software to load one of the 16-bit values for a
hardware multiplier operation .

MB M5[02h]
Multiplier Operand B Register . Used by the user software to load one of the 16-bit values for a
hardware multiplier operation .

MC2 M5[03h]
Multiplier Accumulate Register 2 . Contains the two most significant bytes of the accumulator
register . The 48-bit accumulator is formed by MC2, MC1, and MC0 . The most significant bit of
this register is the signed bit for signed operations .

MC1 M5[04h]
Multiplier Accumulate Register 1 . Contains bytes 3 and 2 of the accumulator register . The 48-bit
accumulator is formed by MC2, MC1, and MC0 .

MC0 M5[05h]
Multiplier Accumulate Register 0 . Contains the two least significant bytes of the accumulator
register . The 48-bit accumulator is formed by MC2, MC1, and MC0 .

MC1R M5[06h]
Multiplier Read Register 1 . Contains bytes 1 and 0 result from the last operation when MCW bit
is 1 or the last operation is either multiply-only or multiply-negate . The contents of this register
remain until an SFR related to the multiplier has been changed .

MC0R M5[07h]
Multiplier Read Register 0 . Contains bytes 3 and 2 result from the last operation when MCW bit
is 1 or the last operation is either multiply-only or multiply-negate . The contents of this register
remain unchanged until an SFR related to the multiplier has been changed .

� � Maxim�Integrated 14-6

MAX31782 User’s Guide

Revision 0; 8/11

14.5.1�Multiplier�Control�Register�(MCNT)
Bit 7 6 5 4 3 2 1 0

Name OF MCW CLD SQU OPCS MSUB MMAC SUS

Reset 0 0 0 0 0 0 0 0

Access r rw rw rw rw rw rw rw

BIT NAME DESCRIPTION

7 OF
Overflow�Flag . This bit is set to logic 1 when an overflow occurred for the last operation . This bit can be
set for accumulation/subtraction operations or unsigned multiply-negate attempts . This bit is automatically
cleared to 0 following a reset, starting a multiplier operation, or setting of the CLD bit to 0 .

6 MCW

MC�Register�Write�Select . The state of the MCW bit determines if an operation result will be placed into
the accumulator registers (MC) .
0 = The result will be written to the MC registers .
1 = The result is not written to the MC registers (MC register content is unchanged) .

5 CLD
Clear�Data�register . This bit initializes the operand registers and the accumulator of the multiplier . When it
is set to 1, the contents of all data registers and the OF bit are cleared to 0 and the operand load counter
is reset immediately . This bit is cleared by hardware automatically . Writing a 0 to this bit has no effect .

4 SQU

Square�Function�Enable . This bit supports the hardware square function . When this bit is set to logic 1, a
square operation is initiated after an operand is written to either the MA or the MB register . Writing data to
either of the operand registers writes to both registers and triggers the specified square or square-accu-
mulate/subtract operation . Setting this bit to 1 also overrides the OPCS bit setting . When SQU is cleared to
logic 0, the hardware square function is disabled .
0 = Square function disabled
1 = Square function enabled

3 OPCS

Operand�Count�Select . This bit defines how many operands must be loaded to trigger a multiply or multi-
ply-accumulate/subtract operation (except when SQU = 1, since this implicitly specifies a single operand) .
When this bit is cleared to logic 0, both operands (MA and MB) must be written to trigger the operation .
When this bit is set to 1, the specified operation is triggered once either operand is written .
0 = Both operands (MA and MB) must be written to trigger the multiplier operation .
1 = Loading one operand (MA or MB) triggers the multiplier operation .

2 MSUB

Multiply-Accumulate�Negate . Configuring this bit to logic 1 enables negation of the product for signed
multiply operations and subtraction of the product from the accumulator (MC[2:0]) when MMAC = 1 . When
MSUB is configured to logic 0, the product of multiply operations will not be negated and accumulation is
selected when MMAC = 1 .

1 MMAC

Multiply-Accumulate�Enable . This bit enables the accumulate or subtract operation (as per MSUB) for
the hardware multiplier . When this bit is cleared to logic 0, the multiplier performs only multiply operations .
When this bit is set to logic 1, the multiplier performs a multiply-accumulate or multiply-subtract operation
based upon the MSUB bit .
0 = Accumulate/subtract operation disabled
1 = Accumulate/subtract operation enabled

0 SUS

Signed-Unsigned . This bit determines the data type of the operands . When this bit is cleared to logic
0, the operands are treated as two’s complement values and the multiplier performs a signed operation .
When this bit is set to logic 1, the operands are treated as absolute magnitudes and the multiplier per-
forms an unsigned operation .
0 = Signed operands
1 = Unsigned operands

� � Maxim�Integrated�� � 14-7

MAX31782 User’s Guide

Revision 0; 8/11

14.5.2�Multiplier�Operand�A�Register�(MA)

Multiplier�Operand�A�Register.�This operand A register is used by the application code to load 16-bit values for mul-
tiplier operations .

14.5.3�Multiplier�Operand�B�Register�(MB)

Multiplier�Operand�B�Register.�This operand B register is used by the application code to load 16-bit values for mul-
tiplier operations .

14.5.4�Multiplier�Accumulator�2�Register�(MC2)

Multiplier�Accumulator�2�Register.�The MC2 register represents the two most significant bytes of the accumulator
register . The 48-bit accumulator is formed by MC2, MC1, and MC0 . For a signed operation, the most significant bit of
this register is the sign bit .

14.5.5�Multiplier�Accumulator�1�Register�(MC1)

Multiplier�Accumulator�1�Register: The MC1 register represents bytes 3 and 2 of the accumulator register . The 48-bit
accumulator is formed by MC2, MC1, and MC0 .

14.5.6�Multiplier�Accumulator�0�Register�(MC0)

Multiplier�Accumulator�0�Register:�The MC0 register represents the two least significant bytes of the accumulator
register . The 48-bit accumulator is formed by MC2, MC1, and MC0 .

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Name MA .15 MA .14 MA .13 MA .12 MA .11 MA .10 MA .9 MA .8 MA .7 MA .6 MA .5 MA .4 MA .3 MA .2 MA .1 MA .0

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Name MB .15 MB .14 MB .13 MB .12 MB .11 MB .10 MB .9 MB .8 MB .7 MB .6 MB .5 MB .4 MB .3 MB .2 MB .1 MB .0

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Name MC2 .15 MC2 .14 MC2 .13 MC2 .12 MC2 .11 MC2 .10 MC2 .9 MC2 .8 MC2 .7 MC2 .6 MC2 .5 MC2 .4 MC2 .3 MC2 .2 MC2 .1 MC2 .0

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Name MC1 .15 MC1 .14 MC1 .13 MC1 .12 MC1 .11 MC1 .10 MC1 .9 MC1 .8 MC1 .7 MC1 .6 MC1 .5 MC1 .4 MC1 .3 MC1 .2 MC1 .1 MC1 .0

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Name MC0 .15 MC0 .14 MC0 .13 MC0 .12 MC0 .11 MC0 .10 MC0 .9 MC0 .8 MC0 .7 MC0 .6 MC0 .5 MC0 .4 MC0 .3 MC0 .2 MC0 .1 MC0 .0

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

�Maxim�Integrated�� � 14-8

MAX31782 User’s Guide

Revision 0; 8/11

14.5.7�Multiplier�Read�Register�1�(MC1R)

Multiplier�Read�Register�1:�The MC1R register represents bytes 3 and 2 from the result of the last operation when
MCW = 1 or the last operation was a multiply or multiply-negate . When MCW = 0 and the last operation was a multiply-
accumulate/subtract, the contents of this register may or may not agree with the contents of MC1 due to the combinato-
rial nature of the adder . The contents of this register can change if MCNT, MA, MB, or MC[2:0] is changed .

14.5.8�Multiplier�Read�Register�0�(MC0R)

Multiplier�Read�Register�0:�The MC1R register represents bytes 1 and 0 from the result of the last operation when
MCW = 1 or the last operation was a multiply or multiply-negate . When MCW = 0 and the last operation was a multiply-
accumulate/subtract, the contents of this register may or may not agree with the contents of MC0 due to the combinato-
rial nature of the adder . The contents of this register can change if MCNT, MA, MB, or MC[2:0] is changed .

14.6�Hardware�Multiplier�Examples
The following are code examples of multiplier operations .

;Unsigned	Multiply	16-bit	x	16-bit

move			MCNT,	#21h	 	 ;	CLD=1,	SUS=1	(unsigned)

move			MA,	#0FFFh	 	 ;	MC2:0=0000_0000_0000h

move			MB,	#1001h	 	 ;	MC1R:MC0R=	00FF_FFFFh

	 	 	 	 ;	MC2:0=0000_00FF_FFFFh

;Signed	Multiply	16-bit	x	16-bit

move			MCNT,	#20h	 	 ;	CLD=1,	SUS=0	(signed)

move			MA,	#F001h	 	 ;	MC2:0=0000_0000_0000h

move			MB,	#1001h	 	 ;	MC1R:MC0R=	FF00_0001h

	 	 	 	 ;	MC2:0=FFFF_FF00_0001h

;Unsigned	Multiply-Accumulate	16-bit	x	16-bit

	 	 	 	 ;	MC2:0=0000_0100_0001h

move			MCNT,	#03h	 	 ;	MMAC=1,	SUS=1	(unsigned)

move			MA,	#0FFFh	 	 ;

move			MB,	#1001h	 	 ;

	 	 	 	 ;	MC1R:MC0R=02FF_FFFFh

	 	 	 	 ;	MC2:0=0000_0200_0000h

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Name MC1R .15 MC1R .14 MC1R .13 MC1R .12 MC1R .11 MC1R .10 MC1R .9 MC1R .8 MC1R .7 MC1R .6 MC1R .5 MC1R .4 MC1R .3 MC1R .2 MC1R .1 MC1R .0

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Name MC0R .15 MC0R .14 MC0R .13 MC0R .12 MC0R .11 MC0R .10 MC0R .9 MC0R .8 MC0R .7 MC0R .6 MC0R .5 MC0R .4 MC0R .3 MC0R .2 MC0R .1 MC0R .0

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

� � Maxim�Integrated� 14-9

MAX31782 User’s Guide

Revision 0; 8/11

;Signed	Multiply-Accumulate	16-bit	x	16-bit

	 	 	 	 ;	MC2:0=0000_0100_0001h

move			MCNT,	#02h	 	 ;	SUS=0	(signed)

move			MA,	#F001h	 	 ;

move			MB,	#1001h	 	 ;

	 	 	 	 ;	MC1R:MC0R=	FF00_0003h

	 	 	 	 ;	MC2:0=0000_0000_0002h

;Unsigned	Multiply-Subtract	16-bit	x	16-bit

	 	 	 	 ;	MC2:0=0000_0100_0001h

move			MCNT,	#07h	 	 ;	MMAC=1,	MSUB=1,	SUS=1	(unsigned)

move			MA,	#0FFFh	 	 ;

move			MB,	#1001h	 	 ;

	 	 	 	 ;	MC1R:MC0R=FF00_0003h

	 	 	 	 ;	MC2:0=0000_0000_0002h

;Signed	Multiply-Subtract	16-bit	x	16-bit

	 	 	 	 ;	MC2:0=0000_0100_0001h

move			MCNT,	#06h	 	 ;	MMAC=1,	MSUB=1,	SUS=0	(signed)

move			MA,	#F001h	 	 ;

move			MB,	#1001h	 	 ;

	 	 	 	 ;	MC1R:MC0R=	02FF_FFFFh

	 	 	 	 ;	MC2:0=0000_0200_0000h

;Signed	Multiply	Negate	16-bit	x	16-bit

move			MCNT,	#24h	 	 ;	CLD=1,	MSUB=1,	SUS=0	(signed)

move			MA,	#F001h	 	 ;	MC2:0=0000_0000_0000h

move			MB,	#1001h	 	 ;	MC1R:MC0R	=00FF_FFFFh

	 	 	 	 ;	MC2:0=0000_00FF_FFFFh

� Maxim�Integrated� 15-1

MAX31782 User’s Guide

Revision 0; 8/11

SECTION 15: WATCHDOG TIMER

15 .1 Watchdog Timer Description .15-3

15 .1 .2 Watchdog Timer Interrupt Operation .15-3

15 .1 .2 Watchdog Timer Reset Operation . .15-3

15 .1 .3 Watchdog Timer Applications .15-3

15 .2 .4 Watchdog Timer Control Register (WDCN) .15-4

LIST OF TABLES

Table 15-1 . Watchdog Operating States .15-3

LIST OF FIGURES

Figure 15-1 . Watchdog Timer Block Diagram .15-2

This section contains the following information:

� � Maxim�Integrated 15-2

MAX31782 User’s Guide

Revision 0; 8/11

SECTION 15: WATCHDOG TIMER
The watchdog timer is a user-programmable clock counter that can serve as a time-base generator, an event timer, or
a system supervisor . As shown in Figure 15-1, the timer is driven by the main system clock and is supplied to a series
of dividers . If the watchdog interrupt and the watchdog reset are disabled (WDCN .EWDI = 0 and WDCN .EWT = 0), the
watchdog timer and its input clock are disabled . Whenever the watchdog timer is disabled, the watchdog interval timer
(per WDCN .WD[1:0] bits) and 512 clock reset counter are reset if either the interrupt or reset function is enabled . When
the watchdog timer is initially enabled, there is a one-clock to three-clock-cycle delay before it starts . The divider output
is selectable, and determines the interval between timeouts . When the timeout is reached, an interrupt flag is set, and
if enabled, an interrupt occurs . A watchdog-reset function is also provided in addition to the watchdog interrupt . The
reset and interrupt are completely discrete functions that can be acknowledged or ignored, together or separately for
various applications .

Figure 15-1. Watchdog Timer Block Diagram

SYSTEM
CLOCK

TIMEOUT INTERVAL SELECTOR
WD1

WD0

DIVIDE BY
212

DIVIDE BY
23

212 215 218 221

DIVIDE BY
23

WDIF

WTRF

WATCHDOG
INTERRUPT

EWT
(ENABLE WATCHDOG TIMER RESET)

EWDI
(ENABLE WATCHDOG INTERRUPT)

RESET COUNTER
512 SYSCLK DELAY

DIVIDE BY
23

RWT
(RESET WATCHDOG)

TIMEOUT

RESET

MAX31782

� Maxim�Integrated� 15-3

MAX31782 User’s Guide

Revision 0; 8/11

15.1�Watchdog�Timer�Description
When the watchdog timer is enabled, it begins counting system clock cycles . The watchdog count is reset any time
RWT is set to 1 . If the watchdog count reaches the time interval set by WD[1:0], a watchdog timeout occurs, setting the
watchdog interrupt flag (WDCN .WDIF) . A watchdog timeout also generates an interrupt and/or reset to the MAX31782 .
Table 15-1 describes the possible states of the watchdog timer .

Table�15-1.�Watchdog�Operating�States

15.1.2�Watchdog�Timer�Interrupt�Operation
The watchdog interrupt is enabled using the enable watchdog timer interrupt (WDCN .EWDI) bit . When the timeout
occurs, the watchdog timer sets the watchdog interrupt flag bit (WDCN .WDIF), and an interrupt occurs if the interrupt
global enable (IC .IGE) and system interrupt mask (IMR .IMS) are set and an interrupt is not currently being serviced (IC .
INS = 0) . The watchdog interrupt flag must be cleared by software .

15.1.2�Watchdog�Timer�Reset�Operation
To reset the MAX31782, the watchdog timer reset function must be enabled by setting the enable watchdog timer
reset (WDCN .EWT) bit . When a watchdog timeout occurs, the WDIF flag is set and an interrupt is generated if enabled .
Following the timeout, the watchdog counts an additional 512 system clock cycles . To avoid a reset, software must
either set the RWT bit or clear the EWT bit . This can occur at any time during the watchdog timer interval or the addi-
tional 512 system clock cycles after WDIF is set . At the end of the 512 system clock cycles the MAX31782 is reset .
When the reset occurs, the watchdog timer reset flag (WDCN .WTRF) automatically is set to indicate the cause of the
reset . Software must clear this bit manually .

15.1.3�Watchdog�Timer�Applications
Using the watchdog interrupt during software development can allow the user to select ideal watchdog reset locations .
Code is first developed without enabling the watchdog interrupt or reset functions . Once the program is complete, the
watchdog interrupt function is enabled to identify the required locations in code to set the RWT bit . Incrementally adding
instructions to reset the watchdog timer prior to each address location (identified by the watchdog interrupt) allows the
code to eventually run without receiving a watchdog interrupt . At this point the watchdog timer reset can be enabled
without the potential of generating unwanted resets . At the same time the watchdog interrupt can also be disabled .
Proper use of the watchdog interrupt with the watchdog reset allows interrupt software to survey the system for errant
conditions .

When using the watchdog timer as a system monitor, the watchdog reset function should be used . If the interrupt func-
tion were used, the purpose of the watchdog would be defeated . For example, assume the system is executing errant
code prior to the watchdog interrupt . The interrupt would temporarily force the system back into control by vectoring the
CPU to the interrupt service routine . Restarting the watchdog and exiting by an RETI or RET would return the processor
to the errant code . By using the watchdog reset function, the processor is restarted from the beginning of the program
and therefore placed into a known state .

The watchdog timer is controlled by the Watchdog Timer Control register, WDCN . The WDCN register is one of the
system registers and is located in Module 8, Register 15 .

EWT EWDI WDIF ACTIONS

x x 0 No interrupt has occurred .

0 0 x Watchdog disable, clock is gated off .

0 1 1 Watchdog interrupt has occurred .

1 0 1
No interrupt has been generated . Watchdog reset occurs in 512 system clock cycles if RWT is not
set or WDIF is not cleared .

1 1 1
Watchdog interrupt has occurred . Watchdog reset occurs in 512 system clock cycles if RWT is not
set or WDIF is not cleared .

� � Maxim�Integrated� 15-4

MAX31782 User’s Guide

Revision 0; 8/11

15.2.4�Watchdog�Timer�Control�Register�(WDCN)

*Bits 5, 4, 3 and 0 are cleared to 0 on all forms of reset; for others, see individual bit descriptions.

Bit 7 6 5 4 3 2 1 0

Name POR EWDI WD1 WD0 WDIF WTRF EWT RWT

Reset s* s* 0 0 0 s* s* 0

Access rw rw rw rw rw rw rw rw

BIT NAME DESCRIPTION

7 POR

Power-On-Reset Flag . This bit is set to 1 whenever a power-on/brownout reset occurs . It is unaffected by
other forms of reset . This bit can be checked by software following a reset to determine if a power-on/
brownout reset occurred . It should always be cleared by software following a reset to ensure that the
sources of following resets can be determined correctly .

6 EWDI

Enable Watchdog Timer Interrupt . If this bit is set to 1, an interrupt request can be generated when the
WDIF bit is set to 1 by any means . If this bit is cleared to 0, no interrupt occurs when WDIF is set to 1;
however, it does not stop the watchdog timer or prevent watchdog resets from occurring if EWT = 1 . If
EWT = 0 and EWDI = 0, the watchdog timer is stopped . If the watchdog timer is stopped (EWT = 0 and
EWDI = 0), setting the EWDI bit resets the watchdog interval and reset counter and enables the watchdog
timer . This bit is cleared to 0 by power-on reset and is unaffected by other forms of reset .

5:4 WD[1:0]

Watchdog Timer Interval Control Bits . These bits determine the watchdog timeout interval . The timeout
interval is set in terms of system clocks . Modifying the watchdog interval automatically resets the watch-
dog timer unless the 512 system clock reset counter is already in progress, in which case, changing the
WD[1:0] bits does not affect the watchdog timer or reset counter .

WD1 WD0 CLOCKS�UNTIL�INTERRUPT CLOCKS�UNTIL�RESET

0 0 212 212 + 512

0 1 215 215 + 512

1 0 218 218 + 512

1 1 221 221 + 512

3 WDIF

Watchdog Interrupt Flag . This bit is set to 1 when the watchdog timer interval has elapsed or can be set to
1 by user software . When WDIF = 1, an interrupt request occurs if the watchdog interrupt has been enabled
(EWDI = 1) and not otherwise masked or prevented by an interrupt already in service (i .e ., IGE = 1, IMS = 1,
and INS = 0 must be true for the interrupt to occur) . This bit should be cleared by software before exiting the
interrupt service routine to avoid repeated interrupts . Furthermore, if the watchdog reset has been enabled
(EWT = 1), a reset is scheduled to occur 512 system clock cycles following setting of the WDIF bit .

2 WTRF

Watchdog Timer Reset Flag . This bit is set to 1 when the watchdog resets the processor . Software can
check this bit following a reset to determine if the watchdog was the source of the reset . Setting this bit
to 1 in software does not cause a watchdog reset . This bit is cleared by power-on reset only and is unaf-
fected by other forms of reset . It should also be cleared by software following any reset so that the source
of the next reset can be correctly determined by software . This bit is only set to 1 when a watchdog reset
actually occurs . If EWT is cleared to 0 when the watchdog timer elapses, this bit is not set .

1 EWT

Enable Watchdog Timer Reset . If this bit is set to 1 when the watchdog timer elapses, the watchdog resets
the MAX31782 512 system clock cycles later unless action is taken to disable the reset event . Clearing this
bit to 0 prevents a watchdog reset from occurring but does not stop the watchdog timer or prevent watch-
dog interrupts from occurring if EWDI = 1 . If EWT = 0 and EWDI = 0, the watchdog timer is stopped . If the
watchdog timer is stopped (EWT = 0 and EWDI = 0), setting the EWT bit resets the watchdog interval and
reset counter and enables the watchdog timer . This bit is cleared on power-on reset and is unaffected by
other forms of reset .

0 RWT
Reset Watchdog Timer . Setting this bit to 1 resets the watchdog timer count . If watchdog interrupt and/or
reset modes are enabled, the software must set this bit to 1 before the watchdog timer elapses to prevent
an interrupt or reset from occurring . This bit always returns 0 when read .

� Maxim�Integrated� 16-1

MAX31782 User’s Guide

Revision 0; 8/11

SECTION 16: TEST ACCESS PORT (TAP)

16 .1 TAP Controller .16-3

16 .2 TAP State Control . .16-4

16 .2 .1 Test-Logic-Reset .16-4

16 .2 .2 Run-Test-Idle .16-4

16 .2 .3 IR-Scan Sequence . .16-4

16 .2 .4 DR-Scan Sequence . .16-5

16 .3 Communication via TAP . .16-6

16 .3 .1 TAP Communication Examples—IR-Scan and DR-Scan .16-6

LIST OF TABLES

Table 16-1 . Test Access Port Pins . .16-2

Table 16-2 . Instruction Register Content vs . TAP Controller State .16-4

Table 16-3 . Instruction Register (IR[2:0]) Encodings .16-5

LIST OF FIGURES

Figure 16-1 . TAP and TAP Controller . .16-2

Figure 16-2 . TAP Controller State Diagram .16-3

Figure 16-3 . TAP Controller Debug Mode IR-Scan Example .16-6

Figure 16-4 . TAP Controller Debug Mode DR-Scan Example . .16-7

This section contains the following information:

� �Maxim�Integrated� 16-2

MAX31782 User’s Guide

Revision 0; 8/11

SECTION 16: TEST ACCESS PORT (TAP)
The MAX31782 incorporates a test access port (TAP) and TAP controller for communication with a host device across
a 4-wire synchronous serial interface . The TAP can be used by the MAX31782 to support in-system programming and/
or in-circuit debug . The TAP is compatible with the JTAG IEEE standard 1149 and is formed by four interface signals
as described in Table 16-1 . For detailed information on the TAP and TAP controller, refer to IEEE STD 1149 .1 “IEEE
Standard Test Access Port and Boundary-Scan Architecture .”

Table�16-1.�Test�Access�Port�Pins

These pins default to the TAP/JTAG function on reset, which means that the part is always ready for in-circuit debugging
or in-circuit programming operations following any reset . Once an application has been loaded and starts running, the
TAP/JTAG port can still be used for in-circuit debugging operations . If in-circuit debugging functionality is not needed,
the associated port pins can be reclaimed for application use by setting the TAP bit (SC .7) bit to 0 . This disables the
TAP/JTAG interface and allows the four pins to operate as normal port pins . See Figure 16-1 .

Figure 16-1. TAP and TAP Controller

EXTERNAL�PIN�SIGNAL FUNCTION

TDO
(Test Data Output)

Serial-Data Output . This signal is used to serially transfer internal data to the external host . Data
is transferred least significant bit first . Data is driven out only on the falling edge of TCK, only dur-
ing TAP Shift-IR or Shift-DR states and is otherwise inactive .

TDI
(Test Data Input)

Serial-Data Input . This signal is used to receive data serially transferred by the host . Data is
received least significant bit first and is sampled on the rising edge of TCK . TDI is weakly pulled
high internally when TAP = 1 .

TCK
(Test Clock Input)

Serial Shift Clock Provided by Host . When this signal is stopped at 0, storage elements in the
TAP logic must retain their data indefinitely . TCK is weakly pulled high internally when TAP = 1 .

TMS
(Test Mode Select Input)

Mode Select Input . This signal is sampled at the rising edge of TCK and controls movement
between TAP states . TMS is weakly pulled high internally when TAP = 1 .

TDOTDI

WRITE

TCK

DEBUG

UPDATE-DR

UPDATE-DR

VDD

TAP CONTROLLER
TMS

 SYSTEM PROGRAM

READ

POWER-ON
RESET

BYPASS

INSTRUCTION REGISTER

7 6 5 4 3 2 1 0 s1 s0

2 1 0

2 1 0VDD

� Maxim�Integrated� 16-3

MAX31782 User’s Guide

Revision 0; 8/11

16.1�TAP�Controller
The TAP controller is a synchronous state machine that responds to changes at the TMS and TCK signals . Based on its
state transition, the controller provides the clock and control sequence for TAP operation . The performance of the TAP
is dependent on the TCK clock frequency . The maximum TCK clock frequency should be limited to 1/8 the system clock
frequency . This section provides a brief description of the state machine and its state transitions . The state diagram in
Figure 16-2 summarizes the transitions caused by the TMS signal sampling on the rising edge at TCK . The TMS signal
value is presented adjacent to each state transition in the figure .

Figure 16-2. TAP Controller State Diagram

TEST-LOGIC-RESET

RUN-TEST-IDLE SELECT-DR-SCAN

EXIT2-DR

CAPTURE-DR

SHIFT-DR

EXIT1-DR

PAUSE-DR

UPDATE-DR

SELECT-IR-SCAN

EXIT2-IR

CAPTURE-IR

SHIFT-IR

EXIT1-IR

PAUSE-IR

UPDATE-IR

1

0

1 1 1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0 0

1 1

0 0

� � Maxim�Integrated� 16-4

MAX31782 User’s Guide

Revision 0; 8/11

16.2�TAP�State�Control
The TAP provides an independent serial channel to communicate synchronously with the host system . The TAP state
control is achieved through host manipulation of the test mode select (TMS) and test clock (TCK) signals . The TMS
signal is sampled at the rising edge of TCK and decoded by the TAP controller to control movement between the TAP
states . The TDI input and TDO output are meaningful once the TAP is in a serial shift state (i .e ., Shift-IR or Shift-DR) .

16.2.1�Test-Logic-Reset
On a power-on reset, the TAP controller is initialized to the Test-Logic-Reset state and the instruction register (IR[2:0])
is initialized to the Bypass instruction so that it does not affect normal system operation . No matter what the state of the
controller, it enters Test-Logic-Reset when TMS is held high for at least five rising edges of TCK . The controller remains
in the Test-Logic-Reset state if TMS remains high . An erroneous low signal on the TMS can cause the controller to move
into the Run-Test-Idle state, but no disturbance is caused to system operation if the TMS signal is returned and kept
at the intended logic-high for three rising edges of TCK, since this returns the controller to the Test-Logic-Reset state .

16.2.2�Run-Test-Idle
As illustrated in Figure 16-2, the Run-Test-Idle state is simply an intermediate state for getting to one of the two state
sequences in which the controller performs meaningful operations:

• Controller state sequence (IR-Scan) or

• Data register state sequence (DR-Scan)

16.2.3�IR-Scan�Sequence
The controller state sequence allows instructions (e .g ., Debug and System Programming) to be shifted into the instruc-
tion register starting from the Select-IR-Scan state . In the TAP, the instruction register is connected between the TDI
input and the TDO output . Inside the IR-Scan Sequence, the Capture-IR state loads a fixed binary pattern (001b) into the
3-bit shift register and the Shift-IR state causes shifting of TDI data into the shift register and serial output to TDO, least
significant bit first . Once the desired instruction is in the shift register, the instruction can be latched into the parallel
instruction register (IR[2:0]) on the falling edge of TCK in the Update-IR state . The contents of the 3-bit instruction shift
register and parallel instruction register (IR[2:0]) are summarized with respect to the TAP controller states in Table 16-2 .

Table�16-2.�Instruction�Register�Content�vs.�TAP�Controller�State

TAP�CONTROLLER�
STATE

INSTRUCTION�SHIFT�REGISTER
PARALLEL�(3-BIT)

INSTRUCTION�REGISTER�(IR[2:0])

Test-Logic-Reset Undefined Set to Bypass (011b) Instruction

Capture-IR Load 001b at the rising edge of TCK Retain last state

Shift-IR
Input data via TDI and Shift towards TDO at the ris-

ing edge of TCK
Retain last state

Exit1-IR
Exit2-IR

Pause-IR
Retain last state Retain last state

Update-IR Retain last state Load from shift register at the falling edge of TCK

All other states Undefined Retain last state

� Maxim�Integrated�� � 16-5

MAX31782 User’s Guide

Revision 0; 8/11

Table�16-3.�Instruction�Register�(IR[2:0])�Encodings

When the parallel instruction register (IR2:0) is updated, the TAP controller decodes the instruction and performs any
necessary operations, including activation of the data shift register to be used for the particular instruction during data
register shift sequences (DR-Scan) . The length of the activated shift register depends upon the value loaded to the
instruction register (IR2:0) . The supported instruction register encodings and associated data register selections are
shown in Table 16-3 .

The Extest (IR[2:0] = 000b) and Sample/Preload (IR[2:0] = 001b) instructions are mandated by the JTAG standard; how-
ever, the MAX31782 does not intend to make practical use of these instructions . Hence, these instructions are treated
as no-operations but can be entered into the instruction register without affecting the on-chip system logic or pins and
do not change the existing serial data register selection between TDI and TDO .

The Bypass (IR[2:0] = 011b, 101b, or 111b) instruction is also mandated by the JTAG standard . The Bypass instruction
is fully implemented by the MAX31782 to provide a minimum length serial data path between the TDI and the TDO pins .
This is accomplished by providing a single-cell bypass shift register . When the instruction register is updated with the
Bypass instruction, a single bypass register bit is connected serially between TDI and TDO in the Shift-DR state . The
instruction register automatically defaults to the Bypass instruction when the TAP is in the Test-Logic-Reset state . The
Bypass instruction has no affect on the operation of the on-chip system logic .

The Debug (IR[2:0] = 010b) and System Programming (IR[2:0] = 100b) instructions are private instructions that are
intended solely for in-circuit debug and in-system programming operations, respectively . If the instruction register is
updated with the Debug instruction, a 10-bit serial shift register is formed between the TDI and TDO pins in the Shift-
DR state . If the System Programming instruction is entered into the instruction register (IR[2:0]), a 3-bit serial data shift
register is formed between the TDI and TDO pins in the Shift-DR state .

Instruction register (IR[2:0]) settings other than those listed and described are reserved for internal use . As shown in
Figure 16-2, the instruction register serves to select the length of the serial data register between TDI and TDO during
the Shift-DR state .

16.2.4�DR-Scan�Sequence
Once the instruction register has been configured to a desired state (mode), transactions are performed through a
data buffer register associated with that mode . These data transactions are executed serially in a manner analogous
to the process used to load the instruction register and are grouped in the TAP controller state sequence starting from
the Select-DR-Scan state . In the TAP controller state sequence, the Shift-DR state allows internal data to be shifted out
through the TDO pin while the external data is shifted in simultaneously through the TDI pin . Once a complete data pat-
tern is shifted in, input data can be latched into the parallel buffer of the selected register on the falling edge of TCK in
the Update-DR state . On the same TCK falling edge, in the Update-DR state, the internal parallel buffer is loaded to the
data shift register for output . This Shift-DR/Update-DR process serves as the basis for passing information between the
external host and the MAX31782 . These data register transactions occur in the data register portion of the TAP controller
state sequence diagram and have no affect on the instruction register .

IR[2:0] INSTRUCTION FUNCTION SERIAL�DATA�SHIFT�REGISTER�SELECTION

000 Extest No operation Unchanged, retain previous selection

001 Sample/Preload No operation Unchanged, retain previous selection

010 Debug In-circuit debug mode 10-bit shift register

011 Bypass No operation (default) 1-bit shift register

100 System Programming Bootstrap function 3-bit shift register

101 Bypass No operation (default) 1-bit shift register

110 Reserved Reserved Reserved

111 Bypass No operation (default) 1-bit shift register

� � Maxim�Integrated� 16-6

MAX31782 User’s Guide

Revision 0; 8/11

16.3�Communication�via�TAP
The TAP controller is in Test-Logic-Reset state after a power-on reset . During this initial state, the instruction register
contains the Bypass instruction and the serial path defined between the TDI and TDO pins for the Shift-DR state is the
1-bit bypass register . All TAP signals (TCK, TMS, TDI, and TDO) default to being weakly pulled high internally on any
reset . The TAP controller remains in the Test-Logic-Reset state as long as TMS is held high . The TCK and TMS signals
can be manipulated by the host to transition to other TAP states . The TAP controller remains in a given state whenever
TCK is held low .

For the host to establish a specific data communication link, a private instruction must be loaded into the IR[2:0] regis-
ter . Once the instruction is latched in the instruction parallel buffer at the Update-IR state, it is recognized by the TAP
controller and the communication channel is established . In-circuit debug or in-system programming commands and
data can be exchanged between the host and the MAX31782 by operating in the data register portion of the state
sequence (i .e ., DR-Scan) . The TAP retains the private instruction that was loaded into IR[2:0] until a new instruction is
shifted in, or until the TAP controller returns to the Test-Logic-Reset state .

16.3.1�TAP�Communication�Examples—IR-Scan�and�DR-Scan
Figure 16-3 and Figure 16-4 illustrate examples of communication between the host JTAG controller and the TAP of the
MAX31782 . The host controls the TCK and TMS signals to move through the desired TAP states while accessing the
selected shift register through the TDI input and TDO output pair .

Figure 16-3. TAP Controller Debug Mode IR-Scan Example

NEW INSTRUCTION

INSTRUCTION REGISTER

TCK

TMS

TDI

TDO

CONTROL
STATE

IR SHIFT
REGISTER

IR PARALLEL
OUTPUT

REGISTER
SELECTED

TDO
ENABLE

BYPASS

DON'T CARE OR UNDEFINEDDON'T CARE OR UNDEFINED

DON'T CARE OR UNDEFINED DON'T CARE OR UNDEFINED

TEST-LOGIC-RESET

RUN-TEST/IDLE

SELECT-DR-SCAN

SELECT-IR-SCAN

CAPTURE-IR

SHIFT-IR

SHIFT-IR

EXIT1-IR

EXIT1-IR

UPDATE-IR

RUN-TEST/IDLE

EXIT2-IR

PAUSE-IR

� � Maxim�Integrated� 16-7

MAX31782 User’s Guide

Revision 0; 8/11

Figure 16-4. TAP Controller Debug Mode DR-Scan Example

OLD DATA NEW DATA

DATA REGISTER

TCK

TMS

TDI

TDO

CONTROL
STATE

SHIFT
REGISTER

PARALLEL
OUTPUT

INSTRUCTION
REGISTER

TDO
ENABLE

DON'T CARE OR UNDEFINED DON'T CARE OR UNDEFINED

DON'T CARE OR UNDEFINED

TEST-LOGIC-RESET

RUN-TEST/IDLE

SELECT-DR-SCAN

SELECT-DR-SCAN

SELECT-IR-SCAN

CAPTURE-DR

SHIFT-DR

SHIFT-DR

EXIT1-DR

EXIT1-DR

UPDATE-DR

RUN-TEST/IDLE

EXIT2-DR

PAUSE-DR

� �Maxim�Integrated� 17-1

MAX31782 User’s Guide

Revision 0; 8/11

SECTION 17: IN-CIRCUIT DEBUG MODE

17 .1 Background Mode Operation .17-3

17 .1 .1 Breakpoint Registers .17-5

17 .1 .1 .1 Breakpoint 0 Register (BP0) .17-5

17 .1 .1 .2 Breakpoint 1 Register (BP1) .17-5

17 .1 .1 .3 Breakpoint 2 Register (BP2) .17-5

17 .1 .1 .4 Breakpoint 3 Register (BP3) .17-6

17 .1 .1 .5 Breakpoint 4 Register (BP4) .17-6

17 .1 .1 .6 Breakpoint 5 Register (BP5) .17-6

17 .1 .2 Using Breakpoints .17-7

17 .2 Debug Mode .17-7

17 .2 .1 Debug Mode Commands .17-8

17 .2 .2 Read Register Map Command Host-ROM Interaction .17-10

17 .2 .3 Single Step Operation (Trace) . .17-11

17 .2 .4 Return .17-12

17 .2 .5 Debug Mode Special Considerations .17-12

17 .3 In-Circuit Debug Peripheral Registers .17-13

17 .3 .1 In-Circuit Debug Temp 0 Register (ICDT0, M2[18h]) .17-13

17 .3 .2 In-Circuit Debug Temp 1 Register (ICDT1, M2[19h]) .17-13

17 .3 .3 In-Circuit Debug Control Register (ICDC, M2[1Ah]) . .17-14

17 .3 .4 In-Circuit Debug Flag Register (ICDF, M2[1Bh]) .17-15

17 .3 .5 In-Circuit Debug Buffer Register (ICDB, M2[1Ch]) . .17-15

17 .3 .6 In-Circuit Debug Address Register (ICDA, M2[1Dh]) . .17-16

17 .3 .7 In-Circuit Debug Data Register (ICDD, M2[1Eh]) .17-16

LIST OF TABLES

Table 17-1 . Status Bits .17-3

Table 17-2 . Background Mode Commands .17-3

Table 17-3 . Debug Mode Commands .17-9

Table 17-4 . Output from Read Register Map Command .17-11

LIST OF FIGURES

Figure 17-1 . In-Circuit Debugger . .17-2

Figure 17-2 . 10-Bit Word Format .17-3

This section contains the following information:

� � Maxim�Integrated�� � 17-2

MAX31782 User’s Guide

Revision 0; 8/11

SECTION 17: IN-CIRCUIT DEBUG MODE
The MAX31782 is equipped with embedded debug hardware and embedded ROM firmware developed for the pur-
pose of providing in-circuit debugging capability to the user application . The in-circuit debug mode uses the JTAG-
compatible Test Access Port (TAP) as its means of communication between the host and the MAX31782 . Figure 17-1
shows a block diagram of the in-circuit debugger . The in-circuit debug hardware and software features include:

• A debug engine

• A set of registers providing the ability to set breakpoints on register, code, or data

• A set of debug service routines stored in a ROM .

Collectively, these hardware and software features allow two basic modes of in-circuit debugging:

• Background mode allows the host to configure and set up the in-circuit debugger while the CPU continues to
execute the normal program . Debug mode can be invoked from background mode .

• Debug mode allows the debug engine to take control of the CPU, providing read write access to internal registers
and memory, and single-step trace operation .

The embedded hardware debug engine is implemented as a stand-alone hardware block in the MAX31782 . The debug
engine can be enabled for monitoring internal activities and interacting with selected internal registers while the CPU is
executing user code . This capability allows the user to employ the embedded debug engine to debug the actual sys-
tem, in place of the in-circuit emulator that uses external hardware to duplicate operation of the microcontroller outside
of the real application environment .

To enable a communication link between the host and the microcontroller debug engine, the Debug instruction (010b)
must be loaded into the TAP instruction register using the IR-Scan sequence . Once the instruction is latched in the
instruction parallel buffer (IR[2:0]) and is recognized by the TAP controller in the Update-IR state, the 10-bit data shift
register is activated as the communication channel for DR-Scan sequences . The TAP instruction register retains the
Debug instruction until a new instruction is shifted via an IR-Scan or the TAP controller returns to the Test-Logic-Reset
state .

The host now can transmit and receive serial data through the 10-bit data shift register that exists between the TDI input
and TDO output during DR-Scan sequences . All background and debug mode communication (commands, data input/
output, and status) occurs via this serial channel . Each 10-bit exchange of data between the host and the MAX31782
internal hardware is composed of two status bits and a single byte of command or data . The 10-bit word is always
transmitted least significant bit first with the format shown in Figure 17-2 . The details of the two status bits are shown
in Table 17-1 .

Figure 17-1. In-Circuit Debugger

TMS

TDO
TDI

TCK

CPU

ROM

DEBUG ENGINE

ICDB

ICDF

ICDC

BREAKPOINT

COMPARATOR CODE ADDR

DATA ADDR

REG DATA

IP

IR DATA

ADDR

ENABLE

BREAK
ICDA

ICDD

ICDTn

TAP
CONTROLLER

COMPARATOR

COMPARATOR

� � Maxim�Integrated�� � 17-3

MAX31782 User’s Guide

Revision 0; 8/11

The data byte portion of the 10-bit shift register is interfaced directly to the ICDB parallel register . The ICDB register
functions as the holding data register for both transmit and receive operations . On the falling edge of TCK in the Update-
DR state, the outgoing data is loaded from the ICDB parallel register to the debug shift register and the incoming shift
register data is latched in the ICDB parallel register .

17.1�Background�Mode�Operation
When the instruction register is loaded with the Debug instruction (IR[2:0] = 010b), the host can communicate with the
MAX31782 in a background mode using TAP DR-Scan sequences without disturbing CPU operation . Note, however,
that JTAG in-system programming also requires use of the 10-bit debug shift register and, if enabled (JTAG_SPE = 1,
PSS[1:0] = 0), takes precedence over background mode communication . When operating in background mode, the
status bits are always cleared to 00b (non-debug), which indicates that the MAX31782 is ready to receive background
mode commands .

The host can perform the following operations from background mode:

• read/write internal breakpoint registers (BP0–BP5)

• read/write internal in-circuit debug registers (ICDC, ICDF, ICDA, ICDD)

• monitor to determine when a breakpoint match has occurred

• directly invoke debug mode

Table 17-2 shows the background mode commands supported by the MAX31782 . Encodings not listed in this table are
not supported in background mode and are treated as no operations .

Figure 17-2. 10-Bit Word Format

Table�17-1.�Status�Bits

Table�17-2.�Background�Mode�Commands

s[1:0] STATUS/CONDITION

00 Non-Debug. Default condition, background mode, or debug engine inactive .

01 Debug�Idle. Debug engine is ready to receive data from the host (command, data) .

10 Debug�Busy. Debug engine is busy without valid data (i .e ., ROM code execution, trace operations) .

11 Debug�Valid. Debug engine is busy with valid data .

OP�CODE COMMAND OPERATION

0000–0000 No Operation No�operation. Default state for debug shift register .

0000–0001 Read ICDC
Read�control�data�from�the�ICDC. The contents of the ICDC register is loaded into the debug
shift register through the ICDB register for host read . This command requires one follow-on trans-
fer cycle .

0000–0010 Read ICDF
Read�flags�from�the�ICDF. The contents of the ICDF register (1 byte) are loaded into the debug
shift register through the ICDB register for host read . This command requires one follow-on trans-
fer cycle .

TDI TDO

9 09 0

X X s0s1

HOST COMMAND/DATA INPUT MAX31782 DATA OUTPUT STATUS

MAX31782

� � Maxim�Integrated� 17-4

MAX31782 User’s Guide

Revision 0; 8/11

Table�17-2.�Background�Mode�Commands�(continued)
OP�CODE COMMAND OPERATION

0000–0011 Read ICDA
Read�data�from�the�ICDA. The contents of the ICDA register are loaded into the debug shift reg-
ister through the ICDB register for host read . This command requires two follow-on transfer cycles
with the least significant byte first .

0000–0100 Read ICDD
Read�data�from�the�ICDD. The contents of the ICDD register are loaded into the debug shift reg-
ister through the ICDB register for host read . This command requires two follow-on transfer cycles
with the least significant byte first .

0000–0101 Read BP0
Read�data�from�the�BP0 .The contents of the BP0 register are loaded into the debug shift register
through the ICDB register for host read . This command requires two follow-on transfer cycles with
the least significant byte first .

0000–0110 Read BP1
Read�data�from�the�BP1. The contents of the BP1 register are loaded into the debug shift register
through the ICDB register for host read . This command requires two follow-on transfer cycles with
the least significant byte first .

0000–0111 Read BP2
Read�data�from�the�BP2. The contents of the BP2 register are loaded into the debug shift register
through the ICDB register for host read . This command requires two follow-on transfer cycles with
the least significant byte first .

0000–1000 Read BP3
Read�data�from�the�BP3. The contents of the BP3 register are loaded into the debug shift register
through the ICDB register for host read . This command requires two follow-on transfer cycles with
the least significant byte first .

0000–1001 Read BP4
Read�data�from�the�BP4. The contents of the BP4 register are loaded into the debug shift register
via the ICDB register for host read . This command requires two follow-on transfer cycles with the
least significant byte first .

0000–1010 Read BP5
Read�data�from�the�BP5. The contents of the BP5 register are loaded into the debug shift register
via the ICDB register for host read . This command requires two follow-on transfer cycles with the
least significant byte first .

0001–0001 Write ICDC
Write�control�data�to�the�ICDC. The contents of ICDB are loaded into the ICDC register by the
debug engine at the end of the data transfer cycle .

0001–0011 Write ICDA
Write�data�to�the�ICDA. The contents of ICDB are loaded into the ICDA register by the debug
engine at the end of the data transfer cycles . Data is transferred with the least significant byte first .

0001–0100 Write ICDD
Write�data�to�the�ICDD. The contents of ICDB are loaded into the ICDD register by the debug
engine at the end of data transfer cycles . Data is transferred with the least significant byte first .

0001–0101 Write BP0
Write�data�to�the�BP0. The contents of ICDB are loaded into the BP0 register by the debug
engine at the end of data transfer cycles . Data is transferred with the least significant byte first .

0001–0110 Write BP1
Write�data�to�the�BP1. The contents of ICDB are loaded into the BP1 register by the debug
engine at the end of data transfer cycles . Data is transferred with the least significant byte first .

0001–0111 Write BP2
Write�data�to�the�BP2. The contents of ICDB are loaded into the BP2 register by the debug
engine at the end of data transfer cycles . Data is transferred with the least significant byte first .

0001–1000 Write BP3
Write�data�to�the�BP3. The contents of ICDB are loaded into the BP3 register by the debug
engine at the end of data transfer cycles . Data is transferred with the least significant byte first .

0001–1001 Write BP4
Write�data�to�the�BP4. The contents of ICDB are loaded into the BP4 register by the debug
engine at the end of data transfer cycles . Data is transferred with the least significant byte first .

0001–1010 Write BP5
Write�data�to�the�BP5. The contents of ICDB are loaded into the BP5 register by the debug
engine at the end of data transfer cycles . Data is transferred with the least significant byte first .

0001–1111 Debug
Debug�command. This command forces the debug engine into debug mode and halts the CPU
operation at the completion of the current instruction after the debug command is recognized by
the debug engine .

� � Maxim�Integrated� 17-5

MAX31782 User’s Guide

Revision 0; 8/11

17.1.1�Breakpoint�Registers
The MAX31782 incorporates six breakpoint registers (BP0–BP5) that are configurable by the host for establishing different
types of breakpoint mechanisms . The first four breakpoint registers (BP0–BP3) are 16-bit registers that are configurable
as program memory address breakpoints . When enabled, the debug engine forces a break when a match between the
breakpoint register and the program memory execution address occurs . The final two 16-bit breakpoint registers (BP4, BP5)
are configurable in one of two possible capacities . They may be configured as data memory address breakpoints or may
be configured to support register access breakpoints . In either case, if breakpoints are enabled and the defined breakpoint
match occurs, the debug engine generates a break condition . The six breakpoint registers are documented below .

17.1.1.1�Breakpoint�0�Register�(BP0)

The breakpoint 0 register is accessible only through background mode read/write commands . Breakpoint registers
BP0, BP1, BP2, and BP3 serve as program memory address breakpoints . When DME bit is set in background mode, the
debug engine monitors the program-address bus activity while the CPU is executing the user program . If an address
match is detected, a break occurs, allowing the debug engine to take control of the CPU and enter debug mode .

17.1.1.2�Breakpoint�1�Register�(BP1)

The breakpoint 1 register is accessible only via background mode read/write commands . Breakpoint registers BP0,
BP1, BP2, and BP3 serve as program memory address breakpoints . When DME bit is set in background mode, the
debug engine monitors the program-address bus activity while the CPU is executing the user program . If an address
match is detected, a break occurs, allowing the debug engine to take control of the CPU and enter debug mode .

17.1.1.3�Breakpoint�2�Register�(BP2)

The breakpoint 2 register is accessible only via background mode read/write commands . Breakpoint registers BP0,
BP1, BP2, and BP3 serve as program memory address breakpoints . When DME bit is set in background mode, the
debug engine monitors the program-address bus activity while the CPU is executing the user program . If an address
match is detected, a break occurs, allowing the debug engine to take control of the CPU and enter debug mode .

s = special

s = special

s = special

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Name BP0 .15 BP0 .14 BP0 .13 BP0 .12 BP0 .11 BP0 .10 BP0 .9 BP0 .8 BP0 .7 BP0 .6 BP0 .5 BP0 .4 BP0 .3 BP0 .2 BP0 .1 BP0 .0

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Access s s s s s s s s s s s s s s s s

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Name BP1 .15 BP1 .14 BP1 .13 BP1 .12 BP1 .11 BP1 .10 BP1 .9 BP1 .8 BP1 .7 BP1 .6 BP1 .5 BP1 .4 BP1 .3 BP1 .2 BP1 .1 BP1 .0

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Access s s s s s s s s s s s s s s s s

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Name BP2 .15 BP2 .14 BP2 .13 BP2 .12 BP2 .11 BP2 .10 BP2 .9 BP2 .8 BP2 .7 BP2 .6 BP2 .5 BP2 .4 BP2 .3 BP2 .2 BP2 .1 BP2 .0

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Access s s s s s s s s s s s s s s s s

� �Maxim�Integrated� 17-6

MAX31782 User’s Guide

Revision 0; 8/11

17.1.1.4�Breakpoint�3�Register�(BP3)

The breakpoint 3 register is accessible only via background mode read/write commands . Breakpoint registers BP0,
BP1, BP2, and BP3 serve as program memory address breakpoints . When DME bit is set in background mode, the
debug engine monitors the program-address bus activity while the CPU is executing the user program . If an address
match is detected, a break occurs, allowing the debug engine to take control of the CPU and enter debug mode .

17.1.1.5�Breakpoint�4�Register�(BP4)
The breakpoint 4 register is accessible only via background mode read/write commands .

When REGE = 0: This register serves as one of the two data memory address breakpoints . When DME is set in back-
ground mode, the debug engine monitors the data memory address bus activity while the CPU is executing the user
program . If an address match is detected, a break occurs, allowing the debug engine to take over control of the CPU
and enter debug mode .

When REGE = 1: This register serves as one of the two register breakpoints . A break occurs when the destination
register address for the executed instruction matches with the specified module and index . The destination module is
indicated by the M[3:0] bits and the register within that module is defined by the R[4:0] bits .

17.1.1.6�Breakpoint�5�Register�(BP5)
The breakpoint 5 register is accessible only via background mode read/write commands .

When REGE = 0: This register serves as one of the two data memory address breakpoints . When DME is set in back-
ground mode, the debug engine monitors the data memory address bus activity while the CPU is executing the user
program . If an address match is detected, a break occurs, allowing the debug engine to take over control of the CPU
and enter debug mode .

s = special

s = special

s = special

s = special

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Name BP3 .15 BP3 .14 BP3 .13 BP3 .12 BP3 .11 BP3 .10 BP3 .9 BP3 .8 BP3 .7 BP3 .6 BP3 .5 BP3 .4 BP3 .3 BP3 .2 BP3 .1 BP3 .0

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Access s s s s s s s s s s s s s s s s

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Name BP4 .15 BP4 .14 BP4 .13 BP4 .12 BP4 .11 BP4 .10 BP4 .9 BP4 .8 BP4 .7 BP4 .6 BP4 .5 BP4 .4 BP4 .3 BP4 .2 BP4 .1 BP4 .0

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Access s s s s s s s s s s s s s s s s

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Name - - - - - - - R .4 R .3 R .2 R .1 R .0 M .3 M .2 M .1 M .0

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Access s s s s s s s s s s s s s s s s

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Name BP5 .15 BP5 .14 BP5 .13 BP5 .12 BP5 .11 BP5 .10 BP5 .9 BP5 .8 BP5 .7 BP5 .6 BP5 .5 BP5 .4 BP5 .3 BP5 .2 BP5 .1 BP5 .0

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Access s s s s s s s s* s* s* s* s* s** s** s** s**

� � Maxim�Integrated�� � 17-7

MAX31782 User’s Guide

Revision 0; 8/11

When REGE = 1: This register serves as one of the two register breakpoints . The destination module is indicated by
the M[3:0] bits and the register within that module is defined by the R[4:0] bits . A break occurs when the following two
conditions are met:

1) The destination register address for the executed instruction matches with the specified module and index .

2) The bit pattern written to the destination register matches those bits specified for comparison by the ICDD data
register and ICDA mask register . Only those ICDD data bits with their corresponding ICDA mask bits are compared .
When all bits in the ICDA register are cleared, Condition 2 becomes a don’t care .

17.1.2�Using�Breakpoints
All breakpoint registers (BP0–BP5) default to the FFFFh state on power-on reset or when the Test-Logic-Reset TAP state
is entered . The breakpoint registers are accessible only with background mode read/write commands issued over the
TAP communication link . The breakpoint registers are not read/write accessible to the CPU .

Setting the debug mode enable (DME) bit in the ICDC register to logic 1 enables all six breakpoint registers for break-
point match comparison . The state of the break-on register enable (REGE) bit in the ICDC register determines whether
the BP4 and BP5 breakpoints should be used as data memory address breakpoints (REGE = 0) or as register break-
points (REGE = 1) .

When using the register matching breakpoints, it is important to realize that Debug mode operations (e .g ., read data
memory, write data memory, etc .) require use of ICDA and ICDD for passing of information between the host and
MAX31782 ROM routines . It is advised that these registers be saved and restored or be reconfigured before returning
to the background mode if register breakpoints are to remain enabled .

When a breakpoint match occurs, the debug engine forces a break and the MAX31782 enters Debug Mode . If a break-
point match occurs on an instruction that activates the PFX register, the break is held off until the prefixed operation
completes . The host can assess whether Debug mode has been entered by monitoring the status bits of the 10-bit
word shifted out of the TDO pin . The status bits change from the Non-debug (00b) state associated with background
mode to the Debug-Idle (01b) state when Debug Mode is entered . Debug mode can also be manually invoked by host
issuance of the ‘Debug’ background command .

17.2�Debug�Mode
There are two ways to enter the Debug Mode from Background Mode:

1) Issuance of the Debug command directly by the host via the TAP communication port, or

2) Breakpoint matching mechanism .

The host can issue the Debug background command to the debug engine . This direct Debug Mode entry is non-
deterministic . The response time varies dependent on system conditions when the command is issued . The break-
point mechanism provides a more controllable response, but requires that the breakpoints be initially configured in
Background mode . No matter the method of entry, the debug engine takes control of the CPU in the same manner .
Debug mode entry is similar to the state machine flow of an interrupt except that the target execution address is x8010h
which resides in the utility ROM instead of the address specified by the IV register that is used for interrupts . On debug
mode entry, the following actions occur:

1) Blocks the next instruction fetch from program memory

2) Pushes the return address onto the stack

3) Sets the contents of IP to x8010h

4) Clears the IGE bit to 0 to disable interrupt handler if it is not already clear .

5) Halts CPU operation

s = special

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Name — — — — — — — R .4 R .3 R .2 R .1 R .0 M .3 M .2 M .1 M .0

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Access s s s s s s s s s s s s s s s s

� Maxim�Integrated� 17-8

MAX31782 User’s Guide

Revision 0; 8/11

Once in Debug mode, further breakpoint matches or host issuance of the Debug command are treated as no opera-
tions and do not disturb debug engine operation . Entering debug mode also stops the clocks to all timers, including the
watchdog timer . Temporarily disabling these functions allows debug mode operations without disrupting the relation-
ship between the original user program code and hardware timed functions . No interrupt request can be granted since
the interrupt handler is also halted as a result of IGE = 0 .

17.2.1�Debug�Mode�Commands
The debug engine sets the data shift register status bits to 01b (debug-idle) to indicate that it is ready to accept debug
commands from the host .

The host can perform the following operations from debug mode:

• read register map

• read program stack

• read/write register

• read/write data memory

• single step of CPU (trace)

• return to background mode

• unlock password

The only operations directly controlled by the debug engine are single step and return . All other operations are assisted
by debug service routines contained in the utility ROM . These operations require that multiple bytes be transmitted and/
or received by the host, however each operation always begins with host transmission of a command byte . This com-
mand byte is decoded by the debug engine in order to determine the quantity, sequence, and destination for follow-on
bytes received from the host . Even though there is no timing window specified for receiving the complete command and
follow-on data, the debug engine must receive the correct number of bytes for a particular command before execut-
ing that command . If command and follow-on data are transmitted out of byte order or proper sequence, the only way
to resolve this situation is to disable the debug engine by changing the instruction register (IR2:0) and reloading the
Debug instruction . Once the debug engine has received the proper number of command and follow-on bytes for a given
ROM assisted operation, it responds with the following actions:

• Updates the command bits (CMD[3:0]) in the ICDC register to reflect the host request

• Enables the ROM if it is not been enabled

• Forces a jump to ROM address x8010h

• Sets the data shift register status bits to 10b (debug-busy)

The ROM code performs a read to the ICDC register CMD[3:0] bits to determine its course of action . Some commands
can be processed by the ROM without receiving data from the host beyond the initially supplied follow-on bytes, while
others (e .g ., Unlock Password) require additional data from the host . Some commands need only to provide an indica-
tion of completion to the host, while others (e .g ., Read Register Map) need to supply multiple bytes of output data . To
accomplish data flow control between the host and ROM, the status bits should be used by the host to assess when the
ROM is ready for additional data and/or when the ROM is providing valid data output . Internally, the ROM can ascertain
when new data is available or when it may output the next data byte via the TXC flag . The TXC flag is an important
indicator between the debug engine and the utility ROM debug routines . The utility ROM firmware sets the TXC flag to 1
to indicate that valid data has been loaded to the ICDB register . The debug engine clears the TXC flag to 0 to indicate
completion of a data shift cycle, thus allowing the ROM to continue execution of a requested task that is still in progress .
The utility ROM signals that it has completed a requested task by setting the ROM Operation Done (ROD) bit of the SC
register to logic 1 . The ROD bit is reset by the debug engine when it recognizes the done condition .

Table 17-3 shows the debug mode commands supported by the MAX31782 . Note that background mode com-
mands are supported inside debug mode, however, the documentation of these commands can be found in the
17.1 Background Mode Operation section of the document . Encodings not listed in this table are not supported in
debug mode and are treated as no operations .

� � Maxim�Integrated� 17-9

MAX31782 User’s Guide

Revision 0; 8/11

Table�17-3.�Debug�Mode�Commands
OP�CODE COMMAND OPERATION

0010–0000 No Operation No�operation.

0010–0001
Read register

Map

Read�data�from�internal�registers.�This command forces the debug engine to update the
CMD[3:0] bits in the ICDC to 0001b and perform a jump to ROM code at x8010h . The ROM debug
service routine loads register data to ICDB for host capture/read, starting at the lowest register
location in module 0, one byte at a time in a successive order until all internal registers are read
and output to the host .

0010–0010
Read data
memory

Read�data�from�data�memory. This command requires four follow-on transfer cycles, two for the
starting address and two for the word read count, starting with the LSB address and ending with
the MSB read count . The input address must be based memory map when executing from utility
ROM, as shown in Figure 2-4 . The address is moved to the ICDA register and the word read count
is moved to the ICDD register by the debug engine . This information is directly accessible by the
ROM code . At the completion of this command period, the debug engine updates the CMD[3:0]
bits to 0010b and performs a jump to ROM code at x8010h . The ROM debug service routine loads
ICDB from data memory according to address and count information provided by the host .

0010–0011
Read pro-
gram stack

Read�data�from�program�stack. This command requires four follow-on transfer cycles, two for
the starting address and two for the read count, starting with the LSB address and ending with
the MSB read count . The address is moved to the ICDA register and the read count is moved to
the ICDD register by the debug engine . This information is directly accessible by the ROM code .
At the completion of this command period, the debug engine updates the CMD[3:0] bits to 0011b
and performs a jump to ROM code at x8010h . The ROM debug service routine pops data out from
the stack according to the information received in the ICDA and ICDD register . The address input
is the highest value that is used, as words are popped off the stack and returned in descending
order .

0010–0100 Write register

Write�data�to�a�selected�register. This command requires four follow-on transfer cycles, two for
the register address and two for the data, starting with the LSB address and ending with the MSB
data . The address is moved to the ICDA register and the data is moved to the ICDD register by
the debug engine . This information is directly accessible by the ROM code . At the completion of
this command period, the debug engine updates the CMD[3:0] bits to 0100b and performs a jump
to ROM code at x8010h . The ROM debug service routine updates the select register according
to the information received in the ICDA and ICDD registers . Any register location can be written
using this command, including reserved locations and those used for op code support . No protec-
tion is provided by the debugging interface, and avoiding side effects is the responsibility of the
host system communicating with the MAX31782 . Writing to the IP register alters the address that
execution resumes from when the debugging engine exits .

0010–0101
Write data
memory

Write�data�to�a�selected�data�memory�location. This command requires four follow-on transfer
cycles, two for the memory address and two for the data, starting with the LSB address and ending
with the MSB data . The input address must be based memory map when executing from utility ROM,
as shown in Figure 2-4 . The address is moved to the ICDA register and the data is moved to the
ICDD register by the debug engine . This information is directly accessible by the ROM code . At the
completion of this command period, the debug engine updates the CMD[3:0] bits to 0101b and per-
forms a jump to ROM code at x8010h . The ROM debug service routine updates the selected data
memory location according to the information received in the ICDA and ICDD registers .

0010–0110 Trace
Trace�command. This command allows single stepping the CPU and requires no follow-on trans-
fer cycle . The trace operation is a ‘debug mode exit, one cycle CPU execution, debug mode entry’
sequence .

0010–0111 Return
Return�command. This command terminates the debug mode and returns the debug engine to
background mode . This allows the CPU to resume its normal operation at the point where it has
been last interrupted .

� � Maxim�Integrated� 17-10

MAX31782 User’s Guide

Revision 0; 8/11

17.2.2�Read�Register�Map�Command�Host-ROM�Interaction
A read register map command reads out data contents for all implemented system and peripheral registers . The host
does not specify a target register but instead should expect register data output in successive order, starting with the
lowest order register in register module 0 . Data is loaded by the ROM to the 8-bit ICDB register and is output one byte
per transfer cycle . Thus, for a 16-bit register, two transfer cycles are necessary . The host initiates each transfer cycle to
shift out the data bytes and finds valid data output tagged with a debug-valid (status = 11b) . At the end of each transfer
cycle, the debug engine clears the TXC flag to signal the ROM service routine that another byte may be loaded to ICDB .
The ROM service routine sets the TXC flag each time after loading data to the ICDB register . This process is repeated
until all registers have been read and output to the host . The host system recognizes the completion of the register read
when the status debug-idle is presented . This indicates that the debug engine is ready for another operation .

This command outputs all peripheral registers in the range M0[00h] to M5[17h], along with a fixed set of system reg-
isters . The following formatting rules apply to the returned data:

• All peripheral registers are output as 16 bits, least significant byte first . If the register is an 8-bit register, the top is
returned as 00h .

• System registers are output as 8 bits or 16 bits, least significant byte first .

• Registers I2CBUF_S, I2CBUF_M, and ADDATA are not read . Their values are returned as 0000h .

• Nonimplemented and reserved peripheral registers in the range M0[00h] to M5[17h] are represented as empty word
values in Table 17-4 . These values should be ignored .

The first byte output by this command is the value 184 (B8h), which represents the number of words output for periph-
eral register . There are a total of 216 words that are output by this command . Table 17-4 lists all of the registers output
and the order in which they are output .

Table�17-3.�Debug�Mode�Commands�(continued)
OP�CODE COMMAND OPERATION

0010–1000
Unlock pass-

word

Unlock�the�password�lock.�This command requires 32 follow-on transfer cycles each containing a
byte value to be compared with the program memory password for the purpose of clearing the PWL
bit and granting access to protected debug and loader functions . When this command is received,
the debug engine updates the CMD[3:0] bit to 1000b and performs a jump to ROM code at x8010h .
Data is loaded to the ICDB register when each byte of data is received, beginning with the LSB of
the least significant word first and end with the MSB of the most significant word .

0010–1001 Read register

Read�from�a�selected�internal�register. This command requires two follow-on transfer cycles,
starting with the LSB address and ending with the MSB address . The address is moved to ICDA
register by the debug engine . This information is directly accessible by the ROM code . At the
completion of this command period, the debug engine updates the CMD[3:0] bits to 1001b and
performs a jump to ROM code at x8010h . The ROM debug service routine always assumes a
16-bit register length and returns the requested data LSB first . Reading a register through the
debug interface returns the value that was in that register before the debugging engine was
invoked . An exception to this rule is the SP register; reading the SP register through the debug
interface actually returns the value (SP+1) .

� �Maxim�Integrated� 17-11

MAX31782 User’s Guide

Revision 0; 8/11

Table�17-4.�Output�from�Read�Register�Map�Command

17.2.3�Single�Step�Operation�(Trace)
The debug engine supports single step operation in debug mode by executing a Trace command from the host . The
debug engine allows the CPU to return to its normal program execution for one cycle and then forces a debug mode
re-entry . The steps for the Trace command are:

1) Set status to 10b (debug-busy)

2) Pop the return address from the stack

3) Set the IGE bit to logic 1 if debug mode was activated when IGE = 1 .

4) Supply the CPU with an instruction addressed by the return address

5) Stall the CPU at the end of the instruction execution

6) Block the next instruction fetch from program memory

7) Push the return address onto the stack

8) Set the contents of IP to x8010h

9) Clear the IGE bit to 0 to disable the interrupt handler

10) Halt CPU operation

11) Set the status to debug-idle

WORD REGISTER WORD REGISTER WORD REGISTER WORD REGISTER WORD REGISTER WORD REGISTER WORD REGISTER

0 PO2 32 ---- 64 ---- 96 PWMC0 128 PWMC2 160 MCNT 192 A[3]

1 PO1 33 I2CST_M 65 I2CST_S 97 PWMR0 129 PWMR2 161 MA 193 A[4]

2 ---- 34 I2CIE_M 66 I2CIE_S 98 PWMC1 130 PWMC3 162 MB 194 A[5]

3 MIIR0 35 PO6 67 MIIR2 99 PWMR1 131 PWMR3 163 MC2 195 A6[]

4 ---- 36 MIIR1 68 ---- 100 SMBUS 132 ---- 164 MC1 196 A[7]

5 ---- 37 ---- 69 ---- 101 TACHR0 133 TACHR2 165 MC0 197 A[8]

6 TB0C 38 EIF6 70 ADST 102 ---- 134 ---- 166 MC1R 198 A[9]

7 TB0R 39 EIE6 71 ADADDR 103 TACHR1 135 TACHR3 167 MC0R 199 A[10]

8 PI2 40 PI6 72 ADCN 104 PWMV0 136 PWMV2 168 PWMV4 200 A[11]

9 PI1 41 SVM 73 ---- 105 PWMCN0 137 PWMCN2 169 PWMCN4 201 A[12]

10 ---- 42 ---- 74 ---- 106 PWMV1 138 PWMV3 170 PWMC4 202 A[13]

11 TB0V 43 ---- 75 ---- 107 PWMCN1 139 PWMCN3 171 PWMR4 203 A[14]

12 ---- 44 I2CCN_M 76 I2CCN_S 108 TACHV0 140 TACHV2 172 TACHV4 204 A[15]

13 TB0CN 45 I2CCK_M 77 I2CCK_S 109 TACHCN0 141 TACHCN2 173 TACHCN4 205 IP

14 ---- 46 I2CTO_M 78 I2CTO_S 110 TACHV1 142 TACHV3 174 ---- 206 SP

15 ---- 47 I2CSLA_M 79 I2CSLA_S 111 TACHCN1 143 TACHCN3 175 TACHR4 207 IV

16 PD2 48 EIES6 80 ---- 112 MIIR3 144 MIIR4 176 ---- 208 LC[0]

17 PD1 49 ---- 81 ---- 113 ---- 145 ---- 177 TACHR5 209 LC[1]

18 ---- 50 PD6 82 ---- 114 ---- 146 ---- 178 TACHV5 210 OFFS

19 ---- 51 ---- 83 ---- 115 ---- 147 ---- 179 TACHCN5 211 DPC

20 ---- 52 ---- 84 ---- 116 ---- 148 ---- 180 PWMC5 212 GR

21 ---- 53 ---- 85 I2C_SPB 117 ---- 149 ---- 181 PWMR5 213 BP

22 ---- 54 ETS 86 DEV_NUM 118 ---- 150 ---- 182 PWMV5 214 DP[0]

23 ---- 55 ADCG1 87 ---- 119 ---- 151 ---- 183 PWMCN5 215 DP[1]

24 ---- 56 ADCG5 88 ICDT0 120 ---- 152 ---- 184 AP APC

25 ---- 57 ADVOFF 89 ICDT1 121 ---- 153 ---- 185 PSF IC

26 ---- 58 TOEX 90 ICDC 122 ---- 154 ---- 186 IMR SC

27 ---- 59 ---- 91 ICDF 123 ---- 155 ---- 187 IIR CKCN

28 ---- 60 ---- 92 ICDB 124 ---- 156 ---- 188 WDCN 00h

29 ---- 61 ---- 93 ICDA 125 ---- 157 ---- 189 A[0]

30 ---- 62 ---- 94 ICDD 126 ---- 158 ---- 190 A[1]

31 ---- 63 ---- 95 ---- 127 ---- 159 ---- 191 A[2]

� � Maxim�Integrated�� � 17-12

MAX31782 User’s Guide

Revision 0; 8/11

Note that the trace operation uses a return address from the stack as a legitimate address for program fetching . The
host must maintain consistency of program flow during the debug process . The Instruction Pointer is automatically
incremented after each trace operation, thus a new return address is pushed onto the stack before returning the control
to the debug engine . Also, note that the interrupt handler is an essential part of the CPU and a pending interrupt could
be granted during single-step operation since the IGE bit state present on debug mode entry is restored for the single
step .

17.2.4�Return
To terminate the debug mode and return the debug engine to background mode, the host must issue a Return com-
mand to the debug engine . This command causes the following actions:

1) Pop the return address from the stack .

2) Set the IGE bit to logic 1 if debug mode was activated when IGE = 1 .

3) Supply the CPU with an instruction addressed by the return address .

4) Allow the CPU to execute the normal user program .

5) Set the status to 00b (non-debug) .

To prevent a possible endless breakpoint matching loop, no break occurs for a breakpoint match on the first instruction
after returning from debug mode to background mode . Returning to background mode also enables all internal timer
functions .

17.2.5�Debug�Mode�Special�Considerations
The following are special considerations when using debug mode .

• Special caution should be exercised when using the Write Register command on register bits that globally affect
system operation (e .g ., IGE, STOP) . If the write register command is used to invoke stop mode (setting STOP = 1),
the RST pin may be asserted to reset the debug engine and return to the background mode of operation .

• Single stepping (‘Trace’) through any IGE bit change operation results in the debug engine overriding the bit change
since it retains the IGE bit setting captured when active debug mode was entered .

• Single stepping (‘Trace’) into an operation that sets STOP = 1 when IGE = 1 effectively allows enabled interrupts
normally capable of causing exit from stop mode to do so .

• Single stepping (‘Trace’) through any memory read instruction that reads from the utility ROM (such as ‘move Acc,’
@DP[0] with DP[0] set to 8000h) causes the memory read to return an incorrect value .

• Single stepping (‘Trace’) cannot be used when executing code from the utility ROM .

• Data memory allocation is important during system development if in-circuit debug is planned . The top 32-byte
memory location may be used by the debug service routine during debug mode . The data contents in these loca-
tions may be altered and cannot be recovered .

• One available stack location is needed for debug mode . If the stack is full when entering debug mode, the oldest
data in the stack is overwritten .

• Any signal sampling that relies upon the internal system clock (e .g ., counter inputs) can be unreliable since the
system clock is turned off inside active debug mode between debug mode commands .

� � Maxim�Integrated�� � 17-13

MAX31782 User’s Guide

Revision 0; 8/11

17.3�In-Circuit�Debug�Peripheral�Registers
The following peripheral registers are used to control the in-circuit debug mode of the MAX31782 . Addresses of regis-
ters are given as “Mx[yy],” where x is the module number (from 0 to 5 decimal) and yy is the register index (from 00h
to 1Fh hexadecimal) . Fields in the bit definition tables are defined as follows:

• Name: Symbolic names of bits or bit fields in this register .

• Reset: The value of each bit in this register following a standard reset . If this field reads “unchanged,” the given bit
is unaffected by standard reset . If this field reads “s,” the given bit does not have a fixed 0 or 1 reset value because
its value is determined by another internal state or external condition .

• POR: If present this field defines the value of each bit in this register following a power-on reset (as opposed to a
standard reset) . Some bits are unaffected by standard resets and are set/cleared by POR only .

• Access: Bits can be read-only (r) or read/write (rw) . Any special restrictions or conditions that could apply when
reading or writing this bit are detailed in the bit description .

17.3.1�In-Circuit�Debug�Temp�0�Register�(ICDT0,�M2[18h])

This register is read/write accessible by the CPU only in background mode or debug mode . This register is intended
for use by the utility ROM routines as temporary storage to save registers that might otherwise have to be placed in the
stack .

17.3.2�In-Circuit�Debug�Temp�1�Register�(ICDT1,�M2[19h])

This register is read/write accessible by the CPU only in background mode or debug mode . This register is intended
for use by the utility ROM routines as temporary storage to save registers that might otherwise have to be placed in the
stack .

s = special

s = special

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Name ICDT0 .15 ICDT0 .14 ICDT0 .13 ICDT0 .12 ICDT0 .11 ICDT0 .10 ICDT0 .9 ICDT0 .8 ICDT0 .7 ICDT0 .6 ICDT0 .5 ICDT0 .4 ICDT0 .3 ICDT0 .2 ICDT0 .1 ICDT0 .0

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Access s s s s s s s s s s s s s s s s

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Name ICDT1 .15 ICDT1 .14 ICDT1 .13 ICDT1 .12 ICDT1 .11 ICDT1 .10 ICDT1 .9 ICDT1 .8 ICDT1 .7 ICDT1 .6 ICDT1 .5 ICDT1 .4 ICDT1 .3 ICDT1 .2 ICDT1 .1 ICDT1 .0

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Access s s s s s s s s s s s s s s s s

� �Maxim�Integrated�� � 17-14

MAX31782 User’s Guide

Revision 0; 8/11

r = read, s = special

17.3.3�In-Circuit�Debug�Control�Register�(ICDC,�M2[1Ah])
Bit 7 6 5 4 3 2 1 0

Name DME - REGE - CMD3 CMD2 CMD1 CMD0

Reset 0 0 0 0 0 0 0 0

Access rs r rs r rs rs rs rs

BIT NAME DESCRIPTION

7 DME

Debug Mode Enable (DME) . When this bit is cleared to 0, background mode commands may be
executed, but breakpoints are disabled . When this bit is set to 1, breakpoints are enabled while
background mode commands still may be entered . This bit may only be set or cleared from back-
ground debug mode . This bit has no meaning for the ROM code .

6 Reserved Reserved . Do not write to this bit .

5 REGE

Break-On Register Enable . The REGE bit is used to enable the break-on register function . When
REGE bit is set to 1, BP4 and BP5 are used as register breakpoints . A break occurs when the
content of BP4 is matched with the destination address of the current instruction . For BP5, a break
occurs only on a selected data pattern for a selected destination register addressed by BP5 . The
data pattern is determined by the contents in the ICDA and ICDD register . The REGE bit alone
does not enable register breakpoints, but simply changes the manner in which BP4, BP5 are used .
The DME bit still must be set to a logic 1 for any breakpoint to occur . This bit has no meaning for
the ROM code .

4 Reserved Reserved . Do not write to this bit .

3:0 CMD3:0

These bits reflect the current host command in debug mode . These bits are set by the debug
engine and allow the ROM code to determine the course of action

CMD3:0 Action

0000 No operation

0001 Read register

0010 Read data memory

0011 Read stack memory

0100 Write register

0101 Write data memory

1000 Unlock password

1001 Read selected register

Other Reserved

� � Maxim�Integrated�� � 17-15

MAX31782 User’s Guide

Revision 0; 8/11

17.3.5�In-Circuit�Debug�Buffer�Register�(ICDB,�M2[1Ch])

This register serves as the parallel holding buffer for the debug shift register of the TAP . Data is read from or written to
ICDB for serial communication between the debug routines and the external host .

r = read, s = special

17.3.4�In-Circuit�Debug�Flag�Register�(ICDF,�M2[1Bh])
Bit 7 6 5 4 3 2 1 0

Name - - - - PSS1 PSS0 JTAG_SPE TXC

Reset 0 0 0 0 0 0 0 0

Access r r r r rw rw rw rw

Bit 7 6 5 4 3 2 1 0

Name ICDB .7 ICDB .6 ICDB .5 ICDB .4 ICDB .3 ICDB .2 ICDB .1 ICDB .0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

BIT NAME DESCRIPTION

7:4 Reserved Reserved . Do not write to these bits .

3:2 PSS[1:0]

Programming Source Select Bits [1:0] . These bits are used to select a programming interface during
In-System programming when JTAG_SPE is set to 1, otherwise, the logic values of these bits have no
meaning:

PSS1 PSS0 Interface/Action

0 0 JTAG

0 1 I2C

1 x Exit Loader

1 JTAG_SPE

System Program Enable . The JTAG_SPE bit is used for In-System programming support and its logical
state, when read by the CPU, always reflects the logical-OR of the JTAG_SPE bit that is write accessible
by the CPU and the SPE bit of the System Programming Buffer (SPB) Register in the TAP Module (which
is accessible via JTAG) . The logical state of this bit determines the program flow after a reset . When it is
set to logic 1, In-System programming will be executed by the Utility ROM . When it is cleared to 0, execu-
tion will be transferred to user code . This bit allows read/write access by the CPU and is cleared to 0 only
on a power-on reset or Test-Logic-Reset . The JTAG SPE bit will be cleared by hardware when the ROD
bit is set . CPU writes to the JTAG_SPE bit (0 or 1) will result in clearing of the PSS[1:0] bits .

0 TXC

Serial Transfer Complete . This bit is set by hardware at the end of a transfer cycle at the TAP commu-
nication link . The TXC bit helps the debug engine to recognize host requests, either command or data .
This bit is normally set by ROM code to signify or request the sending or receiving of data . The TXC bit
is cleared by the debug engine once set . CPU writes to the TXC bit results in clearing of the PSS[1:0]
bits .

� �Maxim�Integrated� 17-16

MAX31782 User’s Guide

Revision 0; 8/11

17.3.6�In-Circuit�Debug�Address�Register�(ICDA,�M2[1Dh])

This register is used by the debug engine to store addresses so that ROM code can view that information . This register
is also used by the debug engine as a mask register to mask out don’t care bits in the ICDD register when BP5 is used
as a register breakpoint . When a bit in this register is set to 1, the corresponding bit location in the ICDD register is
compared to the data being written to the destination register to determine if a break should be generated . When a bit
in this register is cleared, the corresponding bit in the ICDD register becomes a don’t care and is not compared against
the data being written . When all bits in this register are cleared, any updated data pattern causes a break when the BP5
register matches the destination register address of the current instruction .

17.3.7�In-Circuit�Debug�Data�Register�(ICDD,�M2[1Eh])

This register is used by the debug engine to store data or read count so that ROM code can view that information .
This register is also used by the debug engine as a data register for content matching when BP5 is used as a register
breakpoint . In this case, only data bits in this register with their corresponding mask bits in the ICDA register set are
compared with the updated destination data to determine if a break should be generated .

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Name ICDA .15 ICDA .14 ICDA .13 ICDA .12 ICDA .11 ICDA .10 ICDA .9 ICDA .8 ICDA .7 ICDA .6 ICDA .5 ICDA .4 ICDA .3 ICDA .2 ICDA .1 ICDA .0

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Access r r r r r r r r r r r r r r r r

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Name ICDD .15 ICDD .14 ICDD .13 ICDD .12 ICDD .11 ICDD .10 ICDD .9 ICDD .8 ICDD .7 ICDD .6 ICDD .5 ICDD .4 ICDD .3 ICDD .2 ICDD .1 ICDD .0

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Access r r r r r r r r r r r r r r r r

� � Maxim�Integrated� 18-1

MAX31782 User’s Guide

Revision 0; 8/11

SECTION 18: IN-SYSTEM PROGRAMMING

18 .1 Detailed Description . .18-3

18 .1 .1 Password Protection .18-4

18 .1 .2 Entering JTAG Bootloader . .18-4

18 .1 .3 Entering I2C Bootloader .18-5

18 .1 .4 I2C System Programming Buffer Register (I2C_SPB) . .18-6

18 .2 Bootloader Operation . .18-6

18 .2 .1 JTAG Bootloader Protocol . .18-6

18 .2 .2 I2C Bootloader Protocol .18-7

18 .3 Bootloader Commands .18-8

18 .3 .1 Command 00h—No Operation .18-8

18 .3 .2 Command 01h—Exit Loader .18-8

18 .3 .3 Command 02h—Master Erase .18-9

18 .3 .4 Command 03h—Password Match .18-9

18 .3 .5 Command 04h—Get Status .18-9

18 .3 .6 Command 05h—Get Supported Commands .18-10

18 .3 .7 Command 06h—Get Code Size .18-10

18 .3 .8 Command 07h—Get Data Size . .18-10

18 .3 .9 Command 08h—Get Loader Version .18-11

18 .3 .10 Command 09h—Get Utility ROM Version .18-11

18 .3 .11 Command 0Eh—Get Device Number . .18-11

18 .3 .12 Command 10h—Load Code .18-11

18 .3 .13 Command 11h—Load Data .18-12

18 .3 .14 Command 20h—Dump Code .18-12

18 .3 .15 Command 21h—Dump Data . .18-12

18 .3 .16 Command 30h—CRC Code .18-13

18 .3 .17 Command 31h—CRC Data .18-13

18 .3 .18 Command 40h—Verify Code .18-13

18 .3 .19 Command 41h—Verify Data .18-13

18 .3 .20 Command 50h—Load and Verify Code .18-14

18 .3 .21 Command 51h—Load and Verify Data .18-14

18 .3 .22 Command E0h—Code Page Erase . .18-14

This section contains the following information:

�Maxim�Integrated� 18-2

MAX31782 User’s Guide

Revision 0; 8/11

LIST OF TABLES

Table 18-1 . System Programming Buffer (SPB) .18-4

Table 18-2 . JTAG Bootloader Status Bits .18-5

Table 18-3 . Special Functions of Address 34h .18-5

Table 18-4 . Example Bootload Command . .18-6

Table 18-5 . Command Families .18-8

Table 18-6 . Bootloader Status Flags .18-9

Table 18-7 . Bootloader Status Codes .18-10

LIST OF FIGURES

Figure 18-1 . Entering Bootloader Operation .18-3

Figure 18-2 . I2C Bootloader Polling .18-7

� �Maxim�Integrated� � 18-3

MAX31782 User’s Guide

Revision 0; 8/11

SECTION 18: IN-SYSTEM PROGRAMMING
The MAX31782 contains an internal bootstrap loader utilizing the JTAG or I2C interfaces . As a result, system software
can be upgraded in-system, eliminating the need for a costly hardware retrofit when software updates are required .
After each device reset, MAX31782 ROM code is executed which determines if bootloader operation is desired .
Figure 18-1 provides information on how the MAX31782 enters into bootloader operation .

Figure 18-1. Entering Bootloader Operation

18.1�Detailed�Description
Following every reset, device ROM code is executed that determines if the MAX31782 should enter into a bootloader
mode . First, the ICDF register, which is not cleared by a reset, is read to see if the system programming enable (SPE)
bit is set . See 18.1.2 Entering JTAG Bootloader for more details on setting the SPE bit . If SPE is set, the MAX31782
enters into bootloader operation .

ANY DEVICE RESET OCCURS

BOOTLOADER

SET PSS[1:0] = 01

IS JTAG_SPE
BIT SET?

NO

NO

YES

RESET DEVICE.
BEGIN BOOT ROM CODE

EXECUTION AT 8000h

EXIT BOOTLOADER.
DELAY 128 CLOCK CYCLES.

SET PWL AND ROD BITS.

ROM CODE ENABLE THE
SLAVE I2C INTERFACE

JUMP TO USER CODE
(FLASH) AT 0000h

ROM CODE CHECKS FOR A
VALID PASSWORD. PWL BIT

IS SET IF A VALID PASSWORD
IS DETECTED.

YES

EXIT LOADER
COMMAND

IS PSS[1:0]
! = 1X?

SET I2C_SPE BIT
DEVICE HAS NEVER BEEN PROGRAMMED.

WILL AUTOMATICALLY GO TO I2C
BOOTLOADER.

IS I2C_SPE
BIT SET?

NO

YES

IS PWL BIT SET?

YES

NO

�Maxim�Integrated�� � 18-4

MAX31782 User’s Guide

Revision 0; 8/11

If SPE is not set, the MAX31782 then enables the slave I2C interface . The I2C_SPE bit in the I2C_SPB register is read
to determine if I2C bootloader operation is desired . The I2C_SPB register is not cleared by a reset . See 18.1.3 Entering
I2C Bootloader for more details on setting the I2C_SPE bit . If I2C_SPE is set, the MAX31782 sets the PSS[1:0] bits to
01, which designates I2C bootloader, and enters bootloader operation .

If the I2C_SPE bit is not set, the ROM code then checks for a valid password in flash . See 18.1.1 Password Protection
for more details about the password . If there is not a valid password, the MAX31782 ROM code assumes that the
program memory is blank and the device has never been programmed . The ROM code sets the I2C_SPE bit and the
PSS[1:0] bits to 01 and then enters I2C bootloader operation . Because of this operation, it is required that all programs
contain a valid password in order for the MAX31782 to enter normal operation following a reset .

If none of the preceding conditions have been met, the MAX31782 ROM code will be complete . The MAX31782 then
jumps to program memory location 0000h and begin normal program execution .

18.1.1�Password�Protection
The MAX31782 uses a password to protect the contents of the program memory from simple access and viewing . The
password resides in the 32 bytes of program memory at byte address 0020h to 003Fh . A valid password is defined as
any value that does not contain all 0000h or FFFFh . Following a reset, the password lock bit (PWL) in the SC register is
set if the MAX31782 contains a valid password .

To protect the program memory, MAX31782 grants full access to in-system programming, in-application program-
ming, or in-circuit debugging only after a password match has occurred . When a password match occurs, the PWL
bit is cleared to 0 . When bootloading the device, the password can be matched using the Password Match command,
through either the JTAG or I2C interface .

18.1.2�Entering�JTAG�Bootloader
To enable the bootstrap loader and establish a desired communication channel through JTAG, the system program-
ming instruction (100b) must be loaded into the TAP instruction register using the IR-Scan sequence . The TAP retains
the System Programming instruction until a new instruction is shifted in or the TAP controller returns to the Test-Logic-
Reset state . See SECTION 16: Test Access Port (TAP) for more information regarding the JTAG port .

Once the instruction is latched in the instruction parallel buffer (IR[2:0]) and is recognized by the TAP controller in the
Update-IR state, a 3-bit data shift register is activated as the communication channel for DR-Scan sequences . This
3-bit shift register formed between the TDI and TDO pins is directly interfaced to the 3-bit serial programming buffer
(SPB) . Table 18-1 provides a detailed description of the system programming buffer (SPB) . The data content of the SPB
is reflected in the ICDF register, which allows read and write access by the CPU . These bits are cleared by power-on
reset or Test-Logic-Reset of the TAP controller .

Table�18-1.�System�Programming�Buffer�(SPB)
BIT NAME DESCRIPTION

2:1 PSS[1:0]

Programming Source Select . These bits select the programming interface source .

PSS1 PSS0 PROGRAMMING�SOURCE

0 0 JTAG

0 1 I2C

1 x Exit loader

0 SPE

System Programming Enable (SPE) . Setting this bit to a 1 denotes that JTAG bootloading is desired
upon exiting reset . The logic state of SPE is examined by the utility ROM following a reset to deter-
mine the program flow . When SPE = 1, the bootstrap loader selected by the PSS[1:0] bits is activat-
ed to perform a bootstrap loader function . If SPE = 0, the utility ROM determines if I2C bootloading
is required before transferring execution control to the normal user program .

� � Maxim�Integrated�� � 18-5

MAX31782 User’s Guide

Revision 0; 8/11

Following a reset, if the system programming buffer is set for JTAG bootloading, the bootload routine is entered . The
host must now load the Debug instruction (010b) into the TAP instruction register (IR[2:0]), which enables the 10-bit
Debug shift register between TDI and TDO . When operating in JTAG bootloader mode, the debug state machines are
disabled and the sole purpose of the debug hardware is to simultaneously transfer the data byte shifted in from the host
to the in-circuit debug buffer egister (ICDB) and transfer the contents of an internal holding register (loaded by ROM
code writes of ICDB) into the shift register for output to the host . The 8 most significant bits of the 10-bit shift register
interface directly to the ICDB . The transfer between the shift register and the ICDB register occurs on the falling edge of
TCK at the Update-DR state . The debug hardware additionally clears the TXC bit in the ICDF register at this point . The
ROM loader code controls the status bit output to the host by asserting TXC = 1 when it has valid data to be shifted out .

The two least significant bits of the 10-bit shift register are status bits . The JTAG bootloader has the benefit of using
the same status bit handshaking hardware that is used for in-circuit debugging . The description of the status bits is
described in Table 18-2 .

Note:�When using the JTAG port, the clock rate (TCK) must be kept below 1/8 of the system clock rate .

Table�18-2.�JTAG�Bootloader�Status�Bits

Table�18-3.�Special�Functions�of�Address�34h

18.1.3�Entering�I2C�Bootloader
The MAX31782 also has built-in functionality that allows bootloading over I2C . Bootloading through I2C allows the sys-
tem to update the firmware using only the I2C bus without JTAG or firmware intervention . To access the bootloading
function, slave address 34h is used . This slave address is setup by hardware and cannot be changed through firmware .
As long as the slave I2C port is enabled, which is the default, the MAX31782 always responds to this slave address
without any firmware interaction required . This address should not be used for any purpose other than the special boot-
loading features . Table 18-3 details the special functions that can be performed using slave address 34h .

To enter the I2C bootloader, the host must first write slave address 34h with data F0h and then issue a STOP command .
When the STOP command is received, the I2C _SPE bit is set . The MAX31782 must then be reset . This can be done
using either the RST pin or by using the I2C self-reset . To do an I2C self-reset the host needs to write slave address 34h
with data BBh . Upon receiving an I2C STOP, a reset is performed .

The I2C bootloader can also be entered if a part has never been programmed and does not contain a valid password .
See 18.1.1 Password Protection for more details about the password . Any device that does not have a password set
has the I2C_SPE bit set by ROM code and enters I2C bootloader operation . The ROM code also clears the PWL bit,
which allows full access to all of the bootloader commands .

BITS�1:0 STATUS CONDITION

00 Reserved Invalid condition .

01 Reserved Invalid condition .

10 Loader-Busy ROM loader is busy executing code or processing the current command .

11 Loader-Valid ROM loader is supplying valid output data to the host in current shift operation .

COMMAND�BYTE ACTION

F0h
Sets the I2C_SPE bit in the I2C_SPB register to enable bootloading through I2C . This bit is not cleared on
device reset .

BBh Executes a reset of the MAX31782 when an I2C STOP is received .

All other bytes The I2C_SPE bit in I2C_SPB is cleared . The MAX31782 NACKs this byte .

� � Maxim�Integrated�� � 18-6

MAX31782 User’s Guide

Revision 0; 8/11

18.1.4�I2C�System�Programming�Buffer�Register�(I2C�SPB)

Table�18-4.�Example�Bootload�Command

18.2.1�JTAG�Bootloader�Protocol
The JTAG port consists of a shift register . As data is clocked into TDI, data is clocked out of TDO . Each “byte” on the
JTAG port is actually 10 bits . The two least significant bits are the status bits described in Table 18-2 . The data that is
input to the device on the TDI pin should have the two status bits set to 0 . The following steps are required for each
command .

1) Transmit the Command byte on TDI . Ignore the returned data on TDO .

2) Transmit any Data In bytes on TDI . Ignore the returned data on TDO .

3) Transmit the NOP byte of 00h, on TDI . Ignore the returned data on TDO .

18.2�Bootloader�Operation
Once in bootloader mode, the JTAG and I2C interfaces both use the same commands . How these commands are
implemented will be different between the two interfaces . Table 18-4 shows an example command and parameters . The
next two sections detail how to implement these commands using either the JTAG or I2C interface .

Byte(s) Command Data�In NOP Data�Out Return Dummy�RX

Input Command Data In 00h 00h 00h 00h

Output X X X Data Out 3Eh X

BYTE�NAME DESCRIPTION

Command
All bootloader commands begin with a single command byte . The upper four bits of this command byte define
the command family (from 0 to 15) and the lower four bits define the specific command within that family .

Data In
Data bytes that are input to the bootloader that are required for the command . The number of Data In bytes var-
ies for each command . Some commands do not require any Data In bytes .

NOP The NOP byte is only used for JTAG mode . This is a byte of 00h that is clocked into TDI, while TDO is ignored .

Data Out
Data Out is any data that is returned by the bootloader . The number of Data Out bytes varies for each com-
mand . Some commands do not output any Data Out bytes .

Return

A return value of 3Eh is output by the bootloader following the successful completion of a command . If the
Return byte is read prior to 3Eh being loaded by the bootloader, the read will return the data that is currently
in the shift register . The value 3Eh is only loaded into the shift register once . Any subsequent reads will return
invalid data . In JTAG bootload mode, status bits will tell when ROM loader is sending valid 3Eh .

Dummy RX The Dummy RX byte is only required for I2C mode . This is a dummy read of one byte, followed by a NACK .

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Name — — — — — — — — — — — — — — — I2C_SPE

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Access r r r r r r r r r r r r r r r rw

BIT NAME DESCRIPTION

15:1 — Reserved . The user should not write to these bits .

0 I2C_SPE

Setting this bit to a 1, by writing to slave address 34h, denotes that I2C bootloading is desired upon
exiting reset . The logic state of I2C_SPE is examined by the utility ROM following a reset to determine
the program flow . When I2C_SPE = 1, the I2C bootstrap loader is activated to perform a bootstrap
loader function . Also, if the MAX31782 does not contain a valid password, this bit is set during reset,
followed by entry into the I2C bootstrap loader .

� �Maxim�Integrated�� � 18-7

MAX31782 User’s Guide

Revision 0; 8/11

4) Possibly poll returned data until command execution completes .

5) Transmit 00h on TDI for each Data Out byte . Read the Data Out byte on TDO .

6) Transmit 00h on TDI and verify that the Return byte output on TDO is 3Eh .

7) The Dummy RX byte is not required for the JTAG bootloader to operate .

Some of the bootloader commands, such as the erase and CRC commands require extra time to execute . For these
commands, the two status bits can be used to verify the state of the bootloader . After issuing any of these commands,
the NOP command can continuously be sent to the bootloader . If the returned status bits are 10, the bootloader is still
busy processing the command . If the status bits are 11, the bootloader has completed execution of the command . The
first byte that was returned with status bits 11 is the first byte of valid returned data from the bootloader .

18.2.2�I2C�Bootloader�Protocol
After entering the I2C bootloader, all I2C communication takes place on the default I2C slave address 36h . When writ-
ing data to the MAX31782, slave address 36h (R/W bit = 0) is used . To read data from the MAX31782 I2C bootloader,
slave address 37h (R/W bit = 1) is used . The I2C bootloader does not return the status bits that are available from the
JTAG bootloader . The following I2C steps are required to send each command

1) Send an I2C START, followed by writing slave address 36h (R/W bit set to write) .

2) Write command byte .

3) Write any Data In bytes .

4) The NOP byte is not required for the I2C interface . Sending a NOP byte when using the I2C bootloader places the
bootloader into an unknown state . Instead, an I2C restart needs to be issued, followed by writing slave address 37h
(R/W bit set to read) .

5) Possibly poll returned data until command execution completes .

6) Read and ACK all Data Out bytes .

7) Read and ACK the Return byte, verify that 3Eh was returned .

8) Read and NACK the Dummy RX byte . Ignore the returned data .

9) Send an I2C STOP .

Some of the bootloader commands such as the erase and CRC commands require extra time to execute . For these
commands, the I2C port can be continuously polled to determine when the command completes . This polling is done
by reading the returned data bytes after sending slave address 37h . The I2C bootloader returns data B7h while it is
currently busy . When data other than B7h is returned, the bootloader is returning valid data . An example of polling for
the CRC Code command is shown in Figure 18-2 . After sending slave address 37h, the I2C bootloader outputs B7h until
the command has finished execution . The I2C master needs to continue reading and returning ACK’s until a string of
four bytes with values B7h, YYh, ZZh, 3Eh is returned . The master then reads the Dummy RX byte and NACKs this byte .

Figure 18-2. I2C Bootloader Polling

SLAVE ADDRESS (W)
36h

COMMAND
30h

S A DATA IN
02h

A Data In AddrL
00h

A Data In AddrH
00h

A Data In LengthL
00h

A Data In LengthH
01h

A A

SLAVE ADDRESS (R)
37h

POLLING
B7h

Sr A POLLING...
B7h

A POLLING
B7h

A DATA OUT CRCL
YYh

A DATA OUT CRCH
ZZh

A RETURN
3Eh

A A DUMMY RX
XX

NA P

S = START A = ACKNOWLEDGE
Sr = REPEATED START NA = NOT ACKNOWLEDGE
P = STOP SHADED = SLAVE TRANSACTION

KEY

� �Maxim�Integrated�� � 18-8

MAX31782 User’s Guide

Revision 0; 8/11

18.3�Bootloader�Commands
Commands for the MAX31782 loader are grouped into families . All bootloader commands begin with a single command
byte . The upper 4 bits of this command byte define the command family (from 0 to 15), while the lower 4 bits define the
specific command within that family . The loader command families are shown in Table 18-5 .

Table�18-5.�Command�Families

All commands, except those in Family 0, are password protected . The password must first be matched before these
commands can be executed . This is done using the Password Match command, which clears the PWL bit if a match
is made .

Bootloader commands that fail for any reason set the bootloader status byte to an error code value describing the rea-
son for the failure . This status byte can be read by means of the Get Status command .

For proper bootloader operation, all bytes of data listed for the command must be written or read from the bootloader .
This includes the Return byte, and for the I2C bootloader, the Dummy RX byte . If all bytes are not read, the bootloader
remains in an unknown state even after a new command is sent to the bootloader .

Following are descriptions of the bootloader commands that are available for use by the MAX31782 bootloader .

18.3.1�Command�00h—No�Operation

This is a No Operation command . This command can be sent at any time without the bootloader taking action . This
command is not password protected .

18.3.2�Command�01h—Exit�Loader

This command causes the bootloader to exit . When exiting, the bootloader clears the JTAG_SPE and I2C_SPE bits and
then performs an internal reset of the device . Following the reset, code execution jumps to the beginning of application
code at address 0000h . This command is not password protected .

COMMAND�FAMILY FAMILY�DESCRIPTION

0 Required

1 Load

2 Dump

3 CRC

4 Verify

5 Load and Verify

E Fixed Length Erase

Byte�1

Command

Input 00h

Output X

Byte�1

Command

Input 01h

Output X

� � Maxim�Integrated�� � 18-9

MAX31782 User’s Guide

Revision 0; 8/11

18.3.3�Command�02h—Master�Erase

This command erases (sets to FFFFh) all words in the program flash memory and writes all words in the data SRAM
to zero . This command is not password protected . After this command completes, the password lock bit is automati-
cally cleared, allowing access to all bootloader commands . This command requires approximately 40 ms to complete .
Polling for a return value of 3Eh can be performed during this execution time to determine when the master erase has
completed .

18.3.4�Command�03h—Password�Match

This command accepts a 32-byte password value, which is matched against the password in program memory from
byte address 0020h through 003Fh . If the entered value matches the password in program memory, the password lock
bit is cleared . This command is not password protected .

18.3.5�Command�04h—Get�Status

The Status Flags and Status Code returned by the Get Status command are defined in Table 18-6 and Table 18-7 . This
command is not password protected . The Status Codes are set whenever an error condition occurs and only reflect the
last error . The Status Codes are cleared:

• When the bootloader is initially entered .

• At the start of execution of all commands except Familiy 0 commands .

• At the start of execution of the Family 0 Master Erase and Set Access Mode commands .

Table�18-6.�Bootloader�Status�Flags

Byte�1 Byte�2 Byte�3 Byte�4

Command NOP Return Dummy�RX

Input 02h 00h 00h 00h

Output X X 3Eh X

Byte�1 Bytes�2�to�33 Byte�34 Byte�35 Byte�36

Command Data�In NOP Return Dummy�RX

Input 03h 32-Byte Password 00h 00h 00h

Output X X X 3Eh X

Byte�1 Byte�2 Byte�3 Byte�4 Byte�5 Byte�6

Command NOP Data�Out Data�Out Return Dummy�RX

Input 04h 00h 00h 00h 00h 00h

Output X X Flags Status Code 3Eh X

FLAG�BIT MEANING

8:3 Reserved.

2

Word/Byte�Mode�Supported.
0 – The bootloader supports byte mode only .
1 – The bootloader supports word mode as well as byte mode .
(Note:�the�MAX31782�supports�byte�mode�only)

1

Word/Byte�Mode.
0 – The bootloader is currently in byte mode for memory reads/writes .
1 – The bootloader is currently in word mode for memory reads/writes .
(Note:�the�MAX31782�supports�byte�mode�only)

0
Password�Lock.�This bit will match the SC .PWL bit .
0 – The password is unlocked or had a default value; password-protected commands may be used .
1 – The password is locked . Password-protected commands may not be used .

� � Maxim�Integrated� 18-10

MAX31782 User’s Guide

Revision 0; 8/11

18.3.6�Command�05h—Get�Supported�Commands

The SupportL (LSB) and SupportH (MSB) bytes form a 16-bit value that indicates which command families the boot-
loader supports . If bit 0 is set to 1, it indicates that Family 0 is supported . If bit 1 is set to 1, it indicates that Family 1 is
supported . The value returned by the MAX31782 is 403Fh, indicating that command families 0, 1, 2, 3, 4, 5 and E are
supported . This command is not password protected .

18.3.7�Command�06h—Get�Code�Size

This command returns SizeH:SizeL, which represents the size of available code memory in words minus 1 . The
MAX31782 returns a value of 7FFFh, which indicates 32kWords of program memory are available . This command is not
password protected .

18.3.8�Command�07h—Get�Data�Size

This command returns SizeH:SizeL, which represents the size of available data memory in words minus 1 . The
MAX31782 returns a value of 03FFh, which indicates 1kWords of data memory are available . This command is not
password protected .

Table�18-7.�Bootloader�Status�Codes

Byte�1 Byte�2 Byte�3 Byte�4 Byte�5 Byte�6 Byte�7 Byte�8

Command NOP Data�Out Data�Out Data�Out Data�Out Return Dummy�RX

Input 05h 00h 00h 00h 00h 00h 00h 00h

Output X X SupportL SupportH 00h 00h 3Eh X

Byte�1 Byte�2 Byte�3 Byte�4 Byte�5 Byte�6

Command NOP Data�Out Data�Out Return Dummy�RX

Input 06h 00h 00h 00h 00h 00h

Output X X SizeL SizeH 3Eh X

Byte�1 Byte�2 Byte�3 Byte�4 Byte�5 Byte�6

Command NOP Data�Out Data�Out Return Dummy�RX

Input 07h 00h 00h 00h 00h 00h

Output X X SizeL SizeH 3Eh X

STATUS�VALUE MEANING

00 No�Error.�The last command completed successfully .

01
Family�Not�Supported.�An attempt was made to use a command from a family which the bootloader does
not support .

02
Invalid�Command.�An attempt was made to use a nonexistent command within a supported command
family .

03
No�Password�Match.�An attempt was made to use a password-protected command without first matching
a valid password . Or, the Password Match command was called with an incorrect password value .

04 Bad�Parameter.�An input parameter passed to the command was out of range or otherwise invalid .

05 Verify�Failed.�The verification step failed on a Load/Verify or Verify command .

06 Unknown�Register.�An attempt was made to read from or write to a nonexistent register .

07
Word�Mode�Not�Supported.�An attempt was made to set word mode access, but the bootloader supports
byte mode access only .

08 Master�Erase�Failed.�The bootloader was unable to perform master erase .

� � Maxim�Integrated� 18-11

MAX31782 User’s Guide

Revision 0; 8/11

18.3.9�Command�08h—Get�Loader�Version

This command returns the device’s bootloader version . The format of the version is VersionH .VersionL . For example,
if VersionL returns 00h and VersionH returns 01h, this corresponds to bootloader version 1 .0 . This command is not
password protected .

18.3.10�Command�09h—Get�Utility�ROM�Version

This command returns the device’s ROM code version . The format of the ROM version is VersionH .VersionL . For
example, if VersionL returns 00h and VersionH returns 01h, this corresponds to ROM version 1 .0 . This command is not
password protected .

18.3.11�Command�0Eh—Get�Device�Number

This command returns the value that is stored in the DEV_NUM register . This command is not password protected .

18.3.12�Command�10h—Load�Code

This command programs (Length) bytes of data into the program flash starting at byte address (AddressH:AddressL) .
The bootloader writes one 16-bit word to flash at a time . The low bit of the address is always forced to zero because
instructions in program flash are word aligned . If an odd number of bytes are input, the final word written to the pro-
gram flash has its most significant byte set to 00h . Memory locations in flash that have been previously loaded must be
erased (Master Erase or Page Erase command) before they can be loaded with a new value . The MAX31782 uses a
little-endian memory architecture where the least significant byte of each word is loaded first . For example, if you load
bytes (11h, 22h, 33h, 44h) starting at address 0000h, the first two words of program space are written to 2211h, 4433h .
This command is password protected .

The time required to write one word of data to flash is approximately 80Fs . To guarantee correct programming, a
bootloading program needs to ensure that there is at least 100Fs of time between when the bootloader receives two
words of data . The easiest way to do this is to limit the clock rate to 100kHz . The time to transmit one word of data
with a 100kHz clock exceeds 100Fs, thus giving the previously transmit word time to be programmed into flash prior to
processing the next word . If a faster clock rate is used, delays need to be added to ensure that words are not transmit
at rates faster than 100Fs .

Byte�1 Byte�2 Byte�3 Byte�4 Byte�5 Byte�6

Command NOP Data�Out Data�Out Return Dummy�RX

Input 08h 00h 00h 00h 00h 00h

Output X X VersionL VersionH 3Eh X

Byte�1 Byte�2 Byte�3 Byte�4 Byte�5 Byte�6

Command NOP Data�Out Data�Out Return Dummy�RX

Input 09h 00h 00h 00h 00h 00h

Output X X VersionL VersionH 3Eh X

Byte�1 Byte�2 Byte�3 Byte�4 Byte�5

Command NOP Data�Out Return Dummy�RX

Input 0Eh 00h 00h 00h 00h

Output X X DEV_NUM 3Eh X

Byte�1 Byte�2 Byte�3 Byte�4
(Length)
Bytes

Byte
Length+5

Byte
Length+6

Byte�
Length+7

Command Data�In Data�In Data�In Data�In NOP Return Dummy�RX

Input 10h Length AddressL AddressH Data to load 00h 00h 00h

Output X X X X X X 3Eh X

� � Maxim�Integrated�� � 18-12

MAX31782 User’s Guide

Revision 0; 8/11

The JTAG bootloader also supports polling using the status bits as a method to determine when a word has success-
fully been written into flash . When sending the first two bytes of program data to load, the status bits should return as
11 to signify that the bootloader is valid . After sending the second byte, the bootloader begins writing this first word to
flash and is busy . If a third byte of data is written while the bootloader is busy programming the first word, the status
bits return as 10, which is loader busy . Upon receiving a status of 10, the third byte needs to be sent again until the
status bits return as 11, or loader valid . When this code is returned the third byte has been received and the fourth byte
can now be sent . If using the JTAG bootloader with a clock faster than 100kHz, this polling method should be used for
every byte that is transmit to the bootloader .

18.3.13�Command�11h—Load�Data

This command writes (Length) bytes of data into the data SRAM starting at byte address (AddressH:AddressL) . The
MAX31782 uses a little-endian memory architecture where the least significant byte of each word is loaded first . For
example, if you load bytes (11h, 22h, 33h, 44h) starting at address 0000h, the first two words of memory space are
written to 2211h, 4433h . This command is password protected .

18.3.14�Command�20h—Dump�Code

This command returns the contents of the program flash memory . The memory dump begins at byte address
AddrH:AddrL and contains LengthH:LengthL bytes . This command is password protected .

18.3.15�Command�21h—Dump�Data

This command returns the contents of the SRAM memory . The memory dump begins at byte address AddrH:AddrL and
contains LengthH:LengthL bytes . This command is password protected .

Byte�1 Byte�2 Byte�3 Byte�4
(Length)
Bytes

Byte
Length+5

Byte
Length+6

Byte�
Length+7

Command Data�In Data�In Data�In Data�In NOP Return Dummy�RX

Input 11h Length AddressL AddressH Data to load 00h 00h 00h

Output X X X X X X 3Eh X

Byte�1 Byte�2 Byte�3 Byte�4 Byte�5 Byte�5 Byte�6
Length�
Bytes

Byte�
Length+7

Byte�
Length+8

Command Data�In Data�In Data�In Data�In Data�In NOP Data�Out Return Dummy�RX

Input 20h 2 AddrL AddrH LengthL LengthH 00h 00h 00h 00h

Output X X X X X X X Memory 3Eh X

Byte�1 Byte�2 Byte�3 Byte�4 Byte�5 Byte�5 Byte�6
Length�
Bytes

Byte�
Length+7

Byte�
Length+8

Command Data�In Data�In Data�In Data�In Data�In NOP Data�Out Return Dummy�RX

Input 21h 2 AddrL AddrH LengthL LengthH 00h 00h 00h 00h

Output X X X X X X X Memory 3Eh X

� �Maxim�Integrated�� � 18-13

MAX31782 User’s Guide

Revision 0; 8/11

18.3.16�Command�30h—CRC�Code

This command returns the CRC-16 value (CRCH:CRCL) of the (LengthH:LengthL) bytes of program flash starting at
(AddrH:AddrL) . The formula for the CRC calculation is X16 + X15 + X2 + 1 . This command is password protected .

The CRC calculation takes approximately 45 system clock cycles per byte . During this time polling should be performed
to determine when the loader has finished executing the CRC calculation . If using the I2C loader, use the polling method
shown in Figure 18-2 . When a data string is read that has B7, CRCL, CRCH, 3Eh, the host knows that the calculation
completed successfully . If using the JTAG loader, the JTAG status bits can be used to determine when the CRC cal-
culation is complete .

18.3.17�Command�31h—CRC�Data

This command returns the CRC-16 value (CRCH:CRCL) of the (LengthH:LengthL) bytes of data memory starting at
(AddrH:AddrL) . The formula for the CRC calculation is X16 + X15 + X2 + 1 . This command is password protected .

The CRC calculation takes approximately 45 system clock cycles per byte . During this time polling should be performed
to determine when the loader has finished executing the CRC calculation . If using the I2C loader, use the polling method
shown in Figure 18-2 . When a data string is read that has B7, CRCL, CRCH, 3Eh, the host knows that the calculation
completed successfully . If using the JTAG loader, the JTAG status bits can be used to determine when the CRC cal-
culation is complete .

18.3.18�Command�40h—Verify�Code

This command operates in the same manner as the Load Code command, except that instead of programming the
input data into flash memory, it verifies that the input data matches the data already in code space . If the data does not
match, the status code is set to reflect this failure . This command is password protected .

18.3.19�Command�41h—Verify�Data

This command operates in the same manner as the Load Data command, except that instead of writing the input data
into SRAM, it verifies that the input data matches the data already in data space . If the data does not match, the status
code is set to reflect this failure . This command is password protected .

Byte�1 Byte�2 Byte�3 Byte�4 Byte�5 Byte�6 Byte�7 Byte�8 Byte�9 Byte�10 Byte�11

Command
Data�
In

Data�
In

Data�
In

Data�In Data�In NOP
Data�
Out

Data�
Out

Return
Dummy�
RX

Input 30h 2 AddrL AddrH LengthL LengthH 00h 00h 00h 00h 00h

Output X X X X X X X CRCL CRCH 3Eh X

Byte�1 Byte�2 Byte�3 Byte�4 Byte�5 Byte�6 Byte�7 Byte�8 Byte�9 Byte�10 Byte�11

Command
Data�
In

Data�
In

Data�
In

Data�In Data�In NOP
Data�
Out

Data�
Out

Return
Dummy�
RX

Input 31h 2 AddrL AddrH LengthL LengthH 00h 00h 00h 00h 00h

Output X X X X X X X CRCL CRCH 3Eh X

Byte�1 Byte�2 Byte�3 Byte�4 (Length)�Bytes
Byte�
Length+5

Byte�
Length+6

Byte�
Length+7

Command Data�In Data�In Data�In Data�In NOP Return Dummy�RX

Input 40h Length AddrL AddrH Data to Verify 00h 00h 00h

Output X X X X X X 3Eh X

Byte�1 Byte�2 Byte�3 Byte�4 (Length)�Bytes
Byte�
Length+5

Byte�
Length+6

Byte�
Length+7

Command Data�In Data�In Data�In Data�In NOP Return Dummy�RX

Input 41h Length AddrL AddrH Data to Verify 00h 00h 00h

Output X X X X X X 3Eh X

� � Maxim�Integrated�� �

MAX31782 User’s Guide

Revision 0; 8/11

18.3.20�Command�50h—Load�and�Verify�Code

This command provides the combined functionality of the Load Code and Verify Code commands . After each word of
data is written to flash memory, the loader reads this memory location and verifies that the data matches the input data .
If the verification fails, the status code is set to reflect this failure . All the guidelines that are listed for the Load Code
command must be followed for the Load and Verify Code command . This command is password protected .

18.3.21�Command�51h—Load�and�Verify�Data

This command provides the combined functionality of the Load Data and Verify Data commands . After each word of
data is written to SRAM memory, the loader reads this memory location and verifies that the data matches the input
data . If the verification fails, the status code is set to reflect this failure . The guidelines that are listed for the Load Data
command must be followed for the Load and Verify Data command . This command is password protected .

18.3.22�Command�E0h—Code�Page�Erase

This command erases (programs to FFFFh) all words in a 256 word (512 byte) page of the program flash memory . The
MAX31782 has 128 pages of flash . The input PageNum indicates which page to erase . For example, PageNum = 1
would erase byte addresses 000h through 1FFh and PageNum = 2 would erase byte addresses 200h through 3FFh .
This command requires approximately 40ms to complete . Polling can be performed during this execution time to deter-
mine when the page erase has completed . This command is password protected .

Byte�1 Byte�2 Byte�3 Byte�4 (Length)�Bytes
Byte�
Length+5

Byte�
Length+6

Byte�
Length+7

Command Data�In Data�In Data�In Data�In NOP Return Dummy�RX

Input 50h Length AddrL AddrH Data to load and verify 00h 00h 00h

Output X X X X X X 3Eh X

Byte�1 Byte�2 Byte�3 Byte�4 (Length)�Bytes
Byte�
Length+5

Byte�
Length+6

Byte�
Length+7

Command Data�In Data�In Data�In Data�In NOP Return Dummy�RX

Input 51h Length AddrL AddrH Data to load and verify 00h 00h 00h

Output X X X X X X 3Eh X

Byte�1 Byte�2 Byte�3 Byte�4 Byte�5 Byte�6 Byte�7

Command Data�In Data�In Data�In NOP Return Dummy�RX

Input E0h 0 PageNum 0 00h 00h 00h

Output X X X X X 3Eh X

� � Maxim�Integrated�� � 19-1

MAX31782 User’s Guide

Revision 0; 8/11

SECTION 19: PROGRAMMING

19 .1 Addressing Modes . .19-2

19 .2 Prefixing Operations . .19-2

19 .3 Reading and Writing Registers .19-3

19 .3 .1 Loading an 8-Bit Register with an Immediate Value . .19-3

19 .3 .2 Loading a 16-Bit Register with a 16-Bit Immediate Value .19-3

19 .3 .3 Moving Values Between Registers of the Same Size .19-3

19 .3 .4 Moving Values Between Registers of Different Sizes .19-4

19 .4 Reading and Writing Register Bits . .19-5

19 .5 Using the Arithmetic and Logic Unit .19-6

19 .5 .1 Selecting the Active Accumulator .19-6

19 .5 .2 Enabling Auto-Increment and Auto-Decrement .19-6

19 .5 .3 ALU Operations Using the Active Accumulator and a Source . .19-8

19 .5 .4 ALU Operations Using Only the Active Accumulator .19-8

19 .5 .5 ALU Bit Operations Using Only the Active Accumulator .19-9

19 .5 .6 Example: Adding Two 4-Byte Numbers Using Auto-Increment .19-9

9 .6 Processor Status Flag Operations .19-9

19 .6 .1 Sign Flag .19-9

19 .6 .2 Zero Flag .19-9

19 .6 .3 Equals Flag .19-10

19 .6 .4 Carry Flag .19-10

19 .6 .5 Overflow Flag . .19-11

19 .7 Controlling Program Flow . .19-11

19 .7 .1 Obtaining the Next Execution Address . .19-11

19 .7 .2 Unconditional Jumps . .19-11

19 .7 .3 Conditional Jumps . .19-12

19 .7 .4 Calling Subroutines .19-12

19 .7 .5 Looping Operations . .19-13

19 .7 .6 Conditional Returns .19-14

19 .8 Handling Interrupts .19-14

19 .8 .1 Conditional Return from Interrupt .19-15

19 .9 Accessing the Stack .19-16

19 .10 Accessing Data Memory .19-16

LIST OF TABLES

Table 19-1 . Accumulator Pointer Control Register Settings .19-7

This section contains the following information:

� � Maxim�Integrated�� � 19-2

MAX31782 User’s Guide

Revision 0; 8/11

SECTION 19: PROGRAMMING
The following section provides a programming overview of the MAX31782 . For full details on the instruction set, as well
as System Register and Peripheral Register detailed bit descriptions, see the appropriate sections in this user’s guide .

19.1�Addressing�Modes
The instruction set for the MAX31782 provides three different addressing modes: direct, indirect, and immediate . The
direct addressing mode can be used to specify either source or destination registers, such as:

move	 A[0],	A[1]	 ;	copy	accumulator	1	to	accumulator	0

push	 A[0]	 	 ;	push	accumulator	0	on	the	stack

add		 A[1]	 	 ;	add	accumulator	1	to	the	active	accumulator

Direct addressing is also used to specify addressable bits within registers .
move	 C,	Acc.0	 ;	copy	bit	zero	of	the	active	accumulator

	 	 	 	 ;	to	the	carry	flag

move	 PO0.3,	#1	 ;	set	bit	three	of	port	0	Output	register

Indirect addressing, in which a register contains a source or destination address, is used only in a few cases .
move	 @DP[0],	A[0]	;	copy	accumulator	0	to	the	data	memory

	 	 	 	 ;	location	pointed	to	by	data	pointer	0

move	 A[0],	@SP--	 ;	where	@SP--	is	used	to	pop	the	data	pointed	to

	 	 	 	 ;	by	the	stack	pointer	register

Immediate addressing is used to provide values to be directly loaded into registers or used as operands .
move	 A[0],	#10h	 ;	set	accumulator	1	to	10h/16d

19.2�Prefixing�Operations
All instructions on the MAX31782 are 16 bits long and execute in a single cycle . However, some operations require
more data than can be specified in a single cycle or require that high-order register-index bits be set to achieve the
desired transfer . In these cases, the pre- fix register module PFX is loaded with temporary data and/or required register
index bits to be used by the following instruction . The PFX module only holds loaded data for a single cycle before it
clears to zero .

Instruction prefixing is required for the following operations, which effectively makes them two-cycle operations:

• When providing a 16-bit immediate value for an operation (e .g ., loading a 16-bit register, ALU operation, supplying
an absolute pro- gram branch destination), the PFX module must be loaded in the previous cycle with the high byte
of the 16-bit immediate value unless that high byte is zero . One exception to this rule is when supplying an absolute
branch destination to 00xxh . In this case, PFX still must be written with 00h . Otherwise, the branch instruction would
be considered a relative one instead of the desired absolute branch .

• When selecting registers with indexes greater than 07h within a module as destinations for a transfer or registers
with indexes greater than 0Fh within a module as sources, the PFX[n] register must be loaded in the previous cycle .
This can be combined with the previous item .

Generally, prefixing operations can be inserted automatically by the assembler as needed, so that (for example)
move	 DP[0],	#1234h

actually assembles as
move	 PFX[0],	#12h

move	 DP[0],	#34h

However, the operation
move	 DP[0],	#0055h

� � Maxim�Integrated� 19-3

MAX31782 User’s Guide

Revision 0; 8/11

does not require a prefixing operation even though the register DP[0] is 16-bit . This is because the prefix value defaults
to zero, so the line

move	 PFX[0],	#00h

is not required .

19.3�Reading�and�Writing�Registers
All functions in the MAX31782 are accessed through registers, either directly or indirectly . This section discusses load-
ing registers with immediate values and transferring values between registers of the same size and different sizes .

19.3.1�Loading�an�8-Bit�Register�with�an�Immediate�Value
Any writable 8-bit register with a sub-index from 0h to 7h within its module can be loaded with an immediate value in a
single cycle using the MOVE instruction .

move	 AP,	#05h	 ;	load	accumulator	pointer	register	with	5	hex

Writable 8-bit registers with sub-indexes 8h and higher can be loaded with an immediate value using MOVE as well,
but an additional cycle is required to set the prefix value for the destination .

move	 WDCN,	#33h	 ;	assembles	to:	 move	PFX[2],	#00h

	 	 	 	 ;	 	 	 move	(WDCN-80h),	#33h

19.3.2�Loading�a�16-Bit�Register�with�a�16-Bit�Immediate�Value
Any writable 16-bit register with a sub-index from 0h to 07h can be loaded with an immediate value in a single cycle if
the high byte of that immediate value is zero .

move	 LC[0],	#0010h	;	prefix	defaults	to	zero	for	high	byte

If the high byte of that immediate value is not zero or if the 16-bit destination sub-index is greater than 7h, an extra cycle
is required to load the prefix value for the high byte and/or the high-order register index bits .

	 	 	 	 ;	high	byte	<>	#00h

move	 LC[0],	#0110h	;	assembles	to:	 move	PFX[0],	#01h

	 	 	 	 ;	 	 	 move	LC[0],	#10h

	 	 	 	 ;	destination	sub-index	>	7h

move	 A[8],	#0034h	;	assembles	to:	 move	PFX[2],	#00h

	 	 	 	 ;	 	 	 move	(A[8]-80h),	#34h

19.3.3�Moving�Values�Between�Registers�of�the�Same�Size
Moving data between same-size registers can be done in a single-cycle MOVE if the destination register’s index is from
0h to 7h and the source register index is between 0h and Fh .

move	 A[0],	A[8]	 ;	copy	accumulator	8	to	accumulator	0

move	 LC[0],	LC[1]	;	copy	loop	counter	1	to	loop	counter	0

If the destination register’s index is greater than 7h or if the source register index is greater than Fh, prefixing is required .
move	 A[15],	A[0]	 ;	assembles	to:	 move	PFX[2],	#00h

	 	 	 	 ;	 	 	 move	(A[15]-80h),	A[0]

� � Maxim�Integrated�� � 19-4

MAX31782 User’s Guide

Revision 0; 8/11

19.3.4�Moving�Values�Between�Registers�of�Different�Sizes
Before covering some transfer scenarios that might arise, a special register must be introduced that will be used in
many of these cases . The 16-bit General Register (GR) is expressly provided for performing byte singulation of 16-bit
words . The high and low bytes of GR are individually accessible in the GRH and GRL registers respectively . A read-
only GRS register makes a byte-swapped version of GR accessible and the GRXL register provides a sign-extended
version of GRL .

8-bit�destination�←�low�byte�(16-bit�source)

The simplest transfer possibility would be loading an 8-bit register with the low byte of a 16-bit register . This transfer
does not require use of GR and requires a prefix only if the destination or source register are outside of the single cycle
write or read regions, 0–7h and 0–Fh, respectively .

move	 OFFS,	LC[0]	 ;	copy	the	low	byte	of	LC[0]	to	the	OFFS	register

move	 IMR,	@DP[1]	 ;	copy	the	low	byte	@DP[1]	to	the	IMR	register

move	 WDCN,	LC[0]	 ;	assembles	to:	 move	PFX[2],	#00h

	 	 	 	 ;	 	 	 move	(WDCON-80h),	LC[0]

8-bit�destination�←�high�byte�(16-bit�source)

If, however, we needed to load an 8-bit register with the high byte of a 16-bit source, it would be best to use the GR
register . Transferring the 16-bit source to the GR register adds a single cycle .

move	 GR,	LC[0]	 ;	move	LC[0]	to	the	GR	register

move	 IC,	GRH	 ;	copy	the	high	byte	into	the	IC	register

16-bit�destination�←�concatenation�(8-bit�source,�8-bit�source)

Two 8-bit source registers can be concatenated and stored into a 16-bit destination by using the prefix register to hold
the high-order byte for the concatenated transfer . An additional cycle may be required if either source byte register
index is greater than 0Fh or the 16-bit destination is greater than 07h .

move	 PFX[0],	IC	 ;	load	high	order	source	byte	IC	into	PFX

move	 @++SP,	AP	 ;	store	@DP[0]	the	concatenation	of	IC:AP

	 	 	 	 ;	16-bit	destination	sub-index:	dst=08h

	 	 	 	 ;	8-bit	source	sub-indexes:

	 	 	 	 ;	high=10h,	low=11h

move	 PFX[1],	#00h	;

move	 PFX[3],	high	;	PFX=00:high

move	 dst,	low	 ;	dst=high:low

Low�(16-bit�destination)�←�8-bit�source

To modify only the low byte of a given 16-bit destination, the 16-bit register should be moved into the GR register such
that the high byte can be singulated and the low byte written exclusively . An additional cycle is required if the destina-
tion index is greater than 0Fh .

move	 GR,	DP[0]	 ;	move	DP[0]	to	the	GR	register

move	 PFX[0],	GRH	 ;	get	the	high	byte	of	DP[0]	via	GRH

move	 DP[0],	#20h	 ;	store	the	new	DP[0]	value

	 	 	 	 ;	16-bit	destination	sub-index:	dst=10h

	 	 	 	 ;	8-bit	source	sub-index:	src=11h

move	 PFX[1],	#00h	;

move	 GR,	dst	 ;	read	dst	word	to	the	GR	register

move	 PFX[5],	GRH	 ;	get	the	high	byte	of	dst	via	GRH

move	 dst,	src	 ;	store	the	new	dst	value

� � Maxim�Integrated�� � 19-5

MAX31782 User’s Guide

Revision 0; 8/11

High�(16-bit�destination)�←�8-bit�source

To modify only the high byte of a given 16-bit destination, the 16-bit register should be moved into the GR register such
that the low byte can be singulated and the high byte can be written exclusively . Additional cycles are required if the
destination index is greater than 0Fh or if the source index is greater than 0Fh .

move	 GR,	DP[0]	 ;	move	DP[0]	to	the	GR	register

move	 PFX[0],	#20h	;	get	the	high	byte	of	DP[0]	via	GRH

move	 DP[0],	GRL	 ;	store	the	new	DP[0]	value

	 	 	 	 ;	16-bit	destination	sub-index:	dst=10h

	 	 	 	 ;	8-bit	source	sub-index:	src=11h

move	 PFX[1],	#00h	;

move	 GR,	dst	 ;	read	dst	word	to	the	GR	register

move	 PFX[1],	#00h

move	 PFX[4],	src	 ;	get	the	new	src	byte

move	 dst,	GRL	 ;	store	the	new	dst	value

If the high byte needs to be cleared to 00h, the operation can be shortened by transferring only the GRL byte to the
16-bit destination (example follows):

move	 GR,	DP[0]	 ;	move	DP[0]	to	the	GR	register

move	 DP[0],	GRL	 ;	store	the	new	DP[0]	value,	00h	used	for	high	byte

19.4�Reading�and�Writing�Register�Bits
The MOVE instruction can also be used to directly set or clear any one of the lowest 8 bits of a peripheral register in
module 0h-5h or a system register in module 8h . The set or clear operation will not affect the upper byte of a 16-bit
register that is the target of the set or clear operation . If a set or clear instruction is used on a destination register that
does not support this type of operation, the register high byte will be written with the prefix data and the low byte will
be written with the bit mask (i .e ., all 0s with a single 1 for the set bit operation or all ones with a single 0 for the clear
bit operation) .

Register bits can be set or cleared individually using the MOVE instruction as follows .
move	 IGE,	#1	 ;	set	IGE	(Interrupt	Global	Enable)	bit

move	 APC.6,	#0	 ;	clear	IDS	bit	(APC.6)

As with other instructions, prefixing is required to select destination registers beyond index 07h .

The MOVE instruction may also be used to transfer any one of the lowest 8 bits from a register source or any bit of the
active accumulator (Acc) to the Carry flag . There is no restriction on the source register module for the ‘MOVE C, src .
bit’ instruction .

move	 C,	IIR.3	 ;	copy	IIR.3	to	Carry

move	 C,	Acc.7	 ;	copy	Acc.7	to	Carry

Prefixing is required to select source registers beyond index 15h .

� � � � 19-6

MAX31782 User’s Guide

Revision 0; 8/11

19.5�Using�the�Arithmetic�and�Logic�Unit
The MAX31782 provides a 16-bit ALU, which allows operations to be performed between the active accumulator and
any other register . The MAX31782 provides 16 accumulator registers, of which any one may be selected as the active
accumulator .

19.5.1�Selecting�the�Active�Accumulator
Any of the 16 accumulator registers A[0] through A[15] may be selected as the active accumulator by setting the low
four bits of the

Accumulator Pointer Register (AP) to the index of the accumulator register you want to select .
move	 AP,	#01h	 ;	select	A[1]	as	the	active	accumulator

move	 AP,	#0Fh	 ;	select	A[15]	as	the	active	accumulator

The current active accumulator can be accessed as the Acc register, which is also the register used as the implicit
destination for all arithmetic and logical operations .

move	 A[0],	#55h	 ;	set	A[0]

	 	 	 	 ;	 =	0055	hex

move	 AP,	#00h	 ;	select	A[0]	as	active	accumulator

move	 Acc,	#55h	 ;	set	A[0]

	 	 	 	 ;	 =	0055	hex

19.5.2�Enabling�Auto-Increment�and�Auto-Decrement
The accumulator pointer AP can be set to automatically increment or decrement after each arithmetic or logical opera-
tion . This is useful for operations involving a number of accumulator registers, such as adding or subtracting two mul-
tibyte integers .

If auto-increment/decrement is enabled, the AP register increments or decrements after any of the following operations:

• ADD src (Add source to active accumulator)

• ADDC src (Add source to active accumulator with carry)

• SUB src (Subtract source from active accumulator)

• SUBB src (Subtract source from active accumulator with borrow)

• AND src (Logical AND active accumulator with source)

• OR src (Logical OR active accumulator with source)

• XOR src (Logical XOR active accumulator with source)

• CPL (Bit-wise complement active accumulator)

• NEG (Negate active accumulator)

• SLA (Arithmetic shift left on active accumulator)

• SLA2 (Arithmetic shift left active accumulator two bit positions)

• SLA4 (Arithmetic shift left active accumulator four bit positions)

• SRA (Arithmetic shift right on active accumulator)

• SRA2 (Arithmetic shift right active accumulator two bit positions)

• SRA4 (Arithmetic shift right active accumulator four bit positions)

• RL (Rotate active accumulator left)

• RLC (Rotate active accumulator left through Carry flag)

• RR (Rotate active accumulator right)

• RRC (Rotate active accumulator right through Carry flag)

• SR (Logical shift active accumulator right)

� � Maxim�Integrated�� � 19-7

MAX31782 User’s Guide

Revision 0; 8/11

• MOVE Acc, src (Copy data from source to active accumulator)

• MOVE dst, Acc (Copy data from active accumulator to destination)

• MOVE Acc, Acc (Recirculation of active accumulator contents)

• XCHN (Exchange nibbles within each byte of active accumulator)

• XCH (Exchange active accumulator bytes)

The active accumulator may not be the source in any instruction where it is also the implicit destination .

There is an additional notation that can be used to refer to the active accumulator for the instruction “MOVE dst, Acc .” If
the instruction is instead written as “MOVE dst, A[AP],” the source value is still the active accumulator, but no AP auto-
increment or auto-decrement function will take place, even if this function is enabled . Note that the active accumulator
may not be the destination for the MOVE dst, A[AP] instruction (i .e . MOVE Acc, A[AP] is prohibited) .

So, the two instructions
move	 A[7],	Acc

move	 A[7],	A[AP]

are equivalent, except that the first instruction triggers auto-inc/dec (if it is enabled), while the second one will never
do so .

The Accumulator Pointer Control Register (APC) controls the auto-inc/dec mode as well as selects the range of bits
(modulo) in the AP register that will be incremented or decremented . There are nine different unique settings for the
APC register, as listed in Table 19-1 .

Table�19-1.�Accumulator�Pointer�Control�Register�Settings

For the modulo increment or decrement operation, the selected range of bits in AP are incremented or decremented .
However, if these bits roll over or under, they simply wrap around without affecting the remaining bits in the accumulator
pointer . So, the operations can be defined as follows:

• Increment modulo 2: AP = AP[3:1] + ((AP[0] + 1) mod 2)

• Decrement modulo 2: AP = AP[3:1] + ((AP[0] - 1) mod 2)

• Increment modulo 4: AP = AP[3:2] + ((AP[1:0] + 1) mod 4)

• Decrement modulo 4: AP = AP[3:2] + ((AP[1:0] - 1) mod 4)

• Increment modulo 8: AP = AP[3] + ((AP[2:0] + 1) mod 8)

• Decrement modulo 8: AP = AP[3] + ((AP[2:0] - 1) mod 8)

• Increment modulo 16: AP = (AP + 1) mod 16

• Decrement modulo 16: AP = (AP - 1) mod 16

APC.2�(MOD2) APC.1�(MOD1) APC.0�(MOD0) APC.6�(IDS) APC AUTO�INCREMENT/DECREMENT�SETTING

0 0 0 X 00h No auto-increment/decrement (default mode)

0 0 1 0 01h Increment bit 0 of AP (modulo 2)

0 0 1 1 41h Decrement bit 0 of AP (modulo 2)

0 1 0 0 02h Increment bits [1:0] of AP (modulo 4)

0 1 0 1 42h Decrement bits [1:0] of AP (modulo 4)

0 1 1 0 03h Increment bits [2:0] of AP (modulo 8)

0 1 1 1 43h Decrement bits [2:0] of AP (modulo 8)

1 0 0 0 04h Increment all 4 bits of AP (modulo 16)

1 0 0 1 44h Decrement all 4 bits of AP (modulo 16)

� � Maxim�Integrated�� � 19-8

MAX31782 User’s Guide

Revision 0; 8/11

For this example, assume that all 16 accumulator registers are initially set to zero .

move	 AP,	#02h	 ;	select	A[2]	as	active	accumulator

move	 APC,	#02h	 ;	auto-increment	AP[1:0]	modulo	4

	 	 	 	 ;	 AP	 A[0]	 A[1]	 A[2]	 A[3]

	 	 	 	 ;	 02	 0000	 0000	 0000	 0000

add		 #01h	 	 ;	 03	 0000	 0000	 0001	 0000

add		 #02h	 	 ;	 00	 0000	 0000	 0001	 0002

add		 #03h	 	 ;	 01	 0003	 0000	 0001	 0002

add		 #04h	 	 ;	 02	 0003	 0004	 0001	 0002

add		 #05h	 	 ;	 03	 0003	 0004	 0006	 0002

19.5.3�ALU�Operations�Using�the�Active�Accumulator�and�a�Source
The following arithmetic and logical operations can use any register or immediate value as a source . The active accu-
mulator Acc is always used as the second operand and the implicit destination . Also, Acc may not be used as the
source for any of these operations .

add		 A[4]	 	 ;	Acc	=	Acc	+	A[4]

addc	 #32h	

	 	 	 	 ;	Acc	=	Acc	+	0032h	+	Carry

sub		 A[15]	 	 ;	Acc	=	Acc	–	A[15]

subb	 A[1]	 	 ;	Acc	=	Acc	–	A[1]	–	Carry

cmp		 #00h	

	 	 	 	 ;	If	(Acc	==	0000h),	set	Equals	flag

and		 A[0]	 	 ;	Acc	=	Acc	AND	A[0]

or		 #55h

	 	 	 	 ;	 Acc	=	Acc	OR	#0055h

xor		 A[1]	 	 ;	 Acc	=	Acc	XOR	A[1]

19.5.4�ALU�Operations�Using�Only�the�Active�Accumulator
The following arithmetic and logical operations operate only on the active accumulator .

cpl		 	 	 ;	Acc	=	NOT	Acc
neg		 	 	 ;	Acc	=	(NOT	Acc)	+	1
rl		 	 	 ;	Rotate	accumulator	left	(not	using	Carry)
rlc		 	 	 ;	Rotate	accumulator	left	through	Carry
rr		 	 	 ;	Rotate	accumulator	right	(not	using	Carry)
rrc		 	 	 ;	Rotate	accumulator	right	through	Carry
sla		 	 	 ;	Shift	accumulator	left	arithmetically	once
sla2	 	 	 ;	Shift	accumulator	left	arithmetically	twice
sla4	 	 	 ;	Shift	accumulator	left	arithmetically	four	times
sr		 	 	 ;	Shift	accumulator	right,	set	Carry	to	Acc.0,
	 	 	 	 ;	set	Acc.15	to	zero
sra		 	 	 ;	Shift	accumulator	right	arithmetically	once
sra2	 	 	 ;	Shift	accumulator	right	arithmetically	twice
sra4	 	 	 ;	Shift	accumulator	right	arithmetically	four	times
xchn	 	 	 ;	Swap	low	and	high	nibbles	of	each	Acc	byte
xch		 	 	 ;	Swap	low	byte	and	high	byte	of	Acc

� �Maxim�Integrated�� � 19-9

MAX31782 User’s Guide

Revision 0; 8/11

19.5.5�ALU�Bit�Operations�Using�Only�the�Active�Accumulator
The following operations operate on single bits of the current active accumulator in conjunction with the Carry flag . Any
of these operations may use an Acc bit from 0 to 15 .

move	 C,	Acc.0	 ;	copy	bit	0	of	accumulator	to	Carry

move	 Acc.5,	C	 ;	copy	Carry	to	bit	5	of	accumulator

and		 Acc.3	 	 ;	Acc.3	=	Acc.3	AND	Carry

or		 Acc.0	 	 ;	Acc.0	=	Acc.0	OR	Carry

xor		 Acc.1	 	 ;	Acc.1	=	Acc.1	OR	Carry

None of the above bit operations cause the auto-increment, auto-decrement, or modulo operations defined by the
accumulator pointer control (APC) register .

19.5.6�Example:�Adding�Two�4-Byte�Numbers�Using�Auto-Increment
move	 A[0],	#5678h	;	First	number	–	12345678h

move	 A[1],	#1234h

move	 A[2],	#0AAAAh	;	Second	number	–	0AAAAAAAh

move	 A[3],	#0AAAh

move	 APC,	#81h	 ;	Active	Acc	=	A[0],	increment	low	bit	=	mod	2

add		 A[2]	 	 ;	A[0]	=	5678h	+	AAAAh	=	0122h	+	Carry

addc	 A[3]	 	 ;	A[1]	=	1234h	+	AAAh	+	1	=	1CDFh

	 	 	 	 ;	12345678h	+	0AAAAAAAh	=	1CDF0122h

9.6�Processor�Status�Flag�Operations
The Processor Status Flag (PSF) register contains five flags that are used to indicate and store the results of arithmetic
and logical operations, four of which can also be used for conditional program branching .

19.6.1�Sign�Flag
The Sign flag (PSF .6) reflects the current state of the most significant bit of the active accumulator . If signed arithmetic
is being used, this flag indicates whether the value in the accumulator is positive or negative .

Since the Sign flag is a dynamic reflection of the high bit of the active accumulator, any instruction that changes the
value in the active accumulator can potentially change the value of the Sign flag . Also, any instruction that changes
which accumulator is the active one (including AP auto-increment/decrement) can also change the Sign flag .

The following operation uses the Sign flag:

• JUMP S, src (Jump if Sign flag is set)

19.6.2�Zero�Flag
The Zero flag (PSF .7) is a dynamic flag that reflects the current state of the active accumulator Acc . If all bits in the
active accumulator are zero, the Zero flag equals 1 . Otherwise, it equals 0 .

Since the Zero flag is a dynamic reflection of (Acc = 0), any instruction that changes the value in the active accumulator
can potentially change the value of the Zero flag . Also, any instruction that changes which accumulator is the active one
(including AP auto-increment/decrement) can also change the Zero flag .

The following operations use the Zero flag:

• JUMP Z, src (Jump if Zero flag is set)

• JUMP NZ, src (Jump if Zero flag is cleared)

� �Maxim�Integrated�� � 19-10

MAX31782 User’s Guide

Revision 0; 8/11

19.6.3�Equals�Flag
The Equals flag (PSF .0) is a static flag set by the CMP instruction . When the source given to the CMP instruction is
equal to the active accumulator, the Equals flag is set to 1 . When the source is different from the active accumulator,
the Equals flag is cleared to 0 .

The following instructions use the value of the Equals flag . Please note that the ‘src’ for the JUMP E/NE instructions must
be immediate .

• JUMP E, src (Jump if Equals flag is set)

• JUMP NE, src (Jump if Equals flag is cleared)

In addition to the CMP instruction, any instruction using PSF as the destination can alter the Equals flag .

19.6.4�Carry�Flag
The Carry flag (PSF .1) is a static flag indicating that a carry or borrow bit resulted from the last ADD/ADDC or SUB/SUBB
operation . Unlike the other status flags, it can be set or cleared explicitly and is also used as a generic bit operand by
many other instructions .

The following instructions can alter the Carry flag:

• ADD src (Add source to active accumulator)

• ADDC src (Add source and Carry to active accumulator)

• SUB src (Subtract source from active accumulator)

• SUBB src (Subtract source and Carry from active accumulator)

• SLA, SLA2, SLA4 (Arithmetic shift left active accumulator)

• SRA, SRA2, SRA4 (Arithmetic shift right active accumulator)

• SR (Shift active accumulator right)

• RLC/RRC (Rotate active accumulator left / right through Carry)

• MOVE C, Acc . (Set Carry to selected active accumulator bit)

• MOVE C, #i (Explicitly set, i = 1, or clear, i = 0, the Carry flag)

• CPL C (Complement Carry)

• AND Acc .

• OR Acc .

• XOR Acc .

• MOVE C, src . (Copy bit addressable register bit to Carry)

• Any instruction using PSF as the destination

The following instructions use the value of the Carry flag:

• ADDC src (Add source and Carry to active accumulator)

• SUBB src (Subtract source and Carry from active accumulator)

• RLC/RRC (Rotate active accumulator left/right through Carry)

• CPL C (Complement Carry)

• MOVE Acc ., C (Set selected active accumulator bit to Carry)

• AND Acc . (Carry = Carry AND selected active accumulator bit)

• OR Acc . (Carry = Carry OR selected active accumulator bit)

• XOR Acc . (Carry = Carry XOR selected active accumulator bit)

• JUMP C, src (Jump if Carry flag is set)

• JUMP NC, src (Jump if Carry flag is cleared)

� Maxim�Integrated�� � 19-11

MAX31782 User’s Guide

Revision 0; 8/11

19.6.5�Overflow�Flag
The Overflow flag (PSF .2) is a static flag indicating that the carry or borrow bit (Carry status Flag) resulting from the last
ADD/ADDC or SUB/SUBB operation but did not match the carry or borrow of the high order bit of the active accumula-
tor . The overflow flag is useful when performing signed arithmetic operations .

The following instructions can alter the Overflow flag:

• ADD src (Add source to active accumulator)

• ADDC src (Add source and Carry to active accumulator)

• SUB src (Subtract source from active accumulator)

• SUBB src (Subtract source and Carry from active accumulator)

19.7�Controlling�Program�Flow
The MAX31782 provides several options to control program flow and branching . Jumps may be unconditional, con-
ditional, relative, or absolute . Subroutine calls store the return address on the hardware stack for later return . Built-in
counters and address registers are provided to control looping operations .

19.7.1�Obtaining�the�Next�Execution�Address
The address of the next instruction to be executed can be read at any time by reading the Instruction Pointer (IP)
register . This can be particularly useful for initializing loops . Note that the value returned is actually the address of the
current instruction plus 1, so this will be the address of the next instruction executed as long as the current instruction
does not cause a jump .

19.7.2�Unconditional�Jumps
An unconditional jump can be relative (IP +127/-128 words) or absolute (to anywhere in program space) . Relative
jumps must use an

8-bit immediate operand, such as
Label1:	 	 	 ;	must	be	within	+127/-128	words	of	the	JUMP

...

jump	 Label1

Absolute jumps can use a 16-bit immediate operand, a 16-bit register, or an 8-bit register .
jump	 LongJump	 ;	assembles	to:	 move	PFX[0],	#high(LongJump)

	 	 	 	 ;	 	 	 jump	 	 #low(LongJump)

jump	 DP[0]	 	 ;	absolute	jump	to	the	address	in	DP[0]

If an 8-bit register is used as the jump destination, the prefix value is used as the high byte of the address and the
register is used as the low byte .

� Maxim�Integrated�� � 19-12

MAX31782 User’s Guide

Revision 0; 8/11

19.7.3�Conditional�Jumps
Conditional jumps transfer program execution based on the value of one of the status flags (C, E, Z, S) . Except where
noted for JUMP E and JUMP NE, the absolute and relative operands allowed are the same as for the unconditional
JUMP command .

jump	 c,	Label1	 ;	jump	to	Label1	if	Carry	is	set

jump	 nc,	LongJump	;	jump	to	LongJump	if	Carry	is	not	set

jump	 z,	LC[0]	 ;	jump	to	16-bit	register	destination	if

	 	 	 	 ;	 Zero	is	set

jump	 nz,	Label1	 ;	jump	to	Label1	if	Zero	is	not	set	(Acc<>0)

jump	 s,	A[2]	 ;	jump	to	A[2]	if	Sign	flag	is	set

jump	 e,	Label1	 ;	jump	to	Label1	if	Equal	is	set

jump	 ne,	Label1	 ;	jump	to	Label1	if	Equal	is	cleared

JUMP E and JUMP NE may only use immediate destinations .

19.7.4�Calling�Subroutines
The CALL instruction works the same as the unconditional JUMP, except that the next execution address is pushed
on the stack before transferring program execution to the branch address . The RET instruction is used to return from a
normal call, and RETI is used to return from an interrupt handler routine .

call	 Label1		 ;	if	Label1	is	relative,

	 	 	 	 ;	assembles	to	:	 call	#immediate

call	 LongCall	 ;	assembles	to:	 move	PFX[0],	#high(LongCall)

	 	 	 	 ;	call	#low(LongCall)

call	 LC[0]	 	 ;	call	to	address	in	LC[0]

LongCall:

ret		 	 	 ;	return	from	subroutine

� Maxim�Integrated�� � 19-13

MAX31782 User’s Guide

Revision 0; 8/11

19.7.5�Looping�Operations
Looping over a section of code can be performed by using the conditional jump instructions . However, there is built-in
functionality, in the form of the ‘DJNZ LC[n], src’ instruction, to support faster, more compact looping code with separate
loop counters . The 16-bit registers LC[0], and LC[1] are used to store these loop counts . The ‘DJNZ LC[n], src’ instruc-
tion automatically decrements the associated loop counter register and jumps to the loop address specified by src if
the loop counter has not reached 0 .

To initialize a loop, set the LC[n] register to the count you wish to use before entering the loop’s main body .

The desired loop address should be supplied in the src operand of the ‘DJNZ LC[n], src’ instruction . When the sup-
plied loop address is relative (+127/-128 words) to the DJNZ LC[n] instruction, as is typically the case, the assembler
automatically calculates the relative offset and inserts this immediate value in the object code .

move	 LC[1],	#10h	 	 ;	loop	16	times

LoopTop:	 	 	 	 ;	loop	addr	relative	to	djnz	LC[n],src	instruction

call	 LoopSub

djnz	 LC[1],	LoopTop	 ;	decrement	LC[1]	and	jump	if	nonzero

When the supplied loop address is outside the relative jump range, the prefix register (PFX[0]) is used to supply the
high byte of the loop address as required .

move	 LC[1],	#10h	 	 ;	loop	16	times

LoopTop:	 	 	 	 ;	loop	addr	not	relative	to	djnz	LC[n],src

call	 LoopSub

...

djnz	 LC[1],	LoopTop	 ;	decrement	LC[1]	and	jump	if	nonzero

	 	 	 	 	 ;	assembles	to:	 move	PFX[0],	#high(LoopTop)

	 	 	 	 	 ;		 	 	 djnz	LC[1],	 #low(LoopTop)

If loop execution speed is critical and a relative jump cannot be used, one might consider preloading an internal 16-bit
register with the src loop address for the ‘DJNZ LC[n], src’ loop . This ensures that the prefix register will not be needed
to supply the loop address and always yields the fastest execution of the DJNZ instruction .

move	 LC[0],	#LoopTop	 ;	using	LC[0]	as	address	holding	register

	 	 	 	 	 ;	assembles	to:	 move	PFX[0],	#high(LoopTop)

	 	 	 	 	 ;	 	 	 move	LC[0],	 #low(LoopTop)

move	 LC[1],	#10h	 	 ;	 loop	16	times

...

LoopTop:	 	 	 	 ;	loop	address	not	relative	to	djnz	LC[n],src

call	 LoopSub

...

djnz	 LC[1],	LC[0]		 ;	decrement	LC[1]	and	jump	if	nonzero

If opting to preload the loop address to an internal 16-bit register, the most time and code efficient means is by perform-
ing the load in the instruction just prior to the top of the loop:

move	 LC[1],	#10h	 	 ;	Set	loop	counter	to	16

move	 LC[0],	IP	 	 ;	Set	loop	address	to	the	next	address

LoopTop:	 	 	 	 ;	loop	addr	not	relative	to	djnz	LC[n],src

...

� � Maxim�Integrated�� � 19-14

MAX31782 User’s Guide

Revision 0; 8/11

19.7.6�Conditional�Returns
Similar to the conditional jumps, the MAX31782 also supports a set of conditional return operations . Based upon the
value of one of the status flags, the CPU can conditionally pop the stack and begin execution at the address popped
from the stack . If the condition is not true, the conditional return instruction does not pop the stack and does not change
the instruction pointer . The following conditional return operations are supported:

RET	C	 	 	 	 ;	if	C=1,	a	RET	is	executed

RET	NC	 	 	 	 ;	if	C=0,	a	RET	is	executed

RET	Z	 	 	 	 ;	if	Z=1	(Acc=00h),	a	RET	is	executed

RET	NZ	 	 	 	 ;	if	Z=0	(Acc<>00h),	a	RET	is	executed

RET	S	 	 	 	 ;	if	S=1,	a	RET	is	executed

19.8�Handling�Interrupts
Handling interrupts in the MAX31782 is a three-part process . First, the location of the interrupt handling routine must be
set by writing the address to the 16-bit Interrupt Vector (IV) register . This register defaults to 0000h on reset, but this
will usually not be the desired location since this will often be the location of reset/power-up code .

move	 IV,	IntHandler	 ;	move	PFX[0],	#high(IntHandler)

	 	 	 	 	 ;	move	IV,	#low(IntHandler)

	 	 	 	 	 ;	PFX[0]	write	not	needed	if	IntHandler	addr=00xxh

Next, the interrupt must be enabled . For any interrupts to be handled, the IGE bit in the Interrupt and Control register (IC)
must first be set to 1 . Next, the interrupt itself must be enabled at the module level and locally within the module itself .
The module interrupt enable is located in the Interrupt Mask register, while the location of the local interrupt enable will
vary depending on the module in which the interrupt source is located .

Once the interrupt handler receives the interrupt, the Interrupt in Service (INS) bit will be set by hardware to block further
interrupts, and execution control is transferred to the interrupt service routine . Within the interrupt service routine, the
source of the interrupt must be determined . Since all interrupts go to the same interrupt service routine, the Interrupt
Identification Register (IIR) must be examined to determine which module initiated the interrupt . For example, the II0
(IIR .0) bit will be set if there is a pending interrupt from module 0 . These bits cannot be cleared directly; instead, the
appropriate bit flag in the module must be cleared once the interrupt is handled .

INS is set automatically on entry to the interrupt handler and cleared automatically on exit (RETI) .
IntHandler:

push	 PSF	 	 	 ;	save	C	since	used	in	identification	process

move	 C,	IIR.X	 	 ;	check	highest	priority	flag	in	IIR

jump	 C,	ISR_X	 	 ;	if	IIR.X	is	set,	interrupt	from	module	X

move	 C,	IIR.Y	 	 ;	check	next	highest	priority	int	source

jump	 C,	ISR_Y	 	 ;	if	IIR.Y	is	set,	interrupt	from	module	Y

...

ISR_X:

...

reti

� Maxim�Integrated�� � 19-15

MAX31782 User’s Guide

Revision 0; 8/11

To support high priority interrupts while servicing another interrupt source, the IMR register may be used to create a
user-defined prioritization . The IMR mask register should not be utilized when the highest priority interrupt is being
serviced because the highest priority interrupt should never be interrupted . This is default condition when a hardware
branch is made the Interrupt Vector address (INS is set to 1 by hardware and all other interrupt sources are blocked) .
The code below demonstrates how to use IMR to allow other interrupts .
ISR_Z:

pop		 PSF	 	 	 ;	restore	PSF

push	 IMR	 	 	 ;	save	current	interrupt	mask

move	 IMR,	#int_mask	 ;	new	mask	to	allow	only	higher	priority	ints	move	
INS,	#0	 	 	 	 ;	re-enable	interrupts

...

(interrupt	servicing	code)

...

pop		 IMR	 	 	 ;	restore	previous	interrupt	mask

ret		 	 	 	 ;	back	to	code	or	lower	priority	interrupt

Note that configuring a given IMR register mask bit to ‘0’ only prevents interrupt conditions from the corresponding
module or system from generating an interrupt request . Configuring an IMR mask bit to ‘0’ does not prevent the cor-
responding IIR system or module identification flag from being set . This means that when using the IMR mask register
functionality to block interrupts, there may be cases when both the mask (IMR .x) and identifier (IIR .x) bits should be
considered when determining if the corresponding peripheral should be serviced .

19.8.1�Conditional�Return�from�Interrupt
Similar to the conditional returns, the MAX31782 also supports a set of conditional return from interrupt operations .
Based upon the value of one of the status flags, the CPU can conditionally pop the stack, clear the INS bit to 0, and
begin execution at the address popped from the stack . If the condition is not true, the conditional return from inter-
rupt instruction leaves the INS bit unchanged, does not pop the stack and does not change the instruction pointer . The
following conditional return from interrupt operations are supported:

RETI	C	 	 	 	 ;	if	C=1,	a	RETI	is	executed

RETI	NC	 	 	 	 ;	if	C=0,	a	RETI	is	executed

RETI	Z	 	 	 	 ;	if	Z=1	(Acc=00h),	a	RETI	is	executed

RETI	NZ	 	 	 	 ;	if	Z=0	(Acc<>00h),	a	RETI	is	executed

RETI	S	 	 	 	 ;	if	S=1,	a	RETI	is	executed

� � Maxim�Integrated�� � 19-16

MAX31782 User’s Guide

Revision 0; 8/11

19.9�Accessing�the�Stack
The hardware stack is used automatically by the CALL, RET and RETI instructions, but it can also be used explicitly to
store and retrieve data . All values stored on the stack are 16 bits wide .

The PUSH instruction increments the stack pointer SP and then stores a value on the stack . When pushing a 16-bit value
onto the stack, the entire value is stored . However, when pushing an 8-bit value onto the stack, the high byte stored on
the stack comes from the pre- fix register . The @++SP stack access mnemonic is the associated destination specifier
that generates this push behavior, thus the following two instruction sequences are equivalent:

move	 PFX[0],	IC

push	 PSF	 	 	 ;	stored	on	stack:	IC:PSF

move	 PFX[0],	IC

move	 @++SP,	PSF	 	 ;	stored	on	stack:	IC:PSF

The POP instruction removes a value from the stack and then decrements the stack pointer . The @SP-- stack access mne-
monic is the associated source specifier that generates this behavior, thus the following two instructions are equivalent:

pop		 PSF

move	 PSF,	@SP--

The POPI instruction is equivalent to the POP instruction but additionally clears the INS bit to 0 . Thus, the following two
instructions would be equivalent:

popi	 IP

reti

The @SP-- mnemonic can be used by the MAX31782 so that stack values may be used directly by ALU operations (e .g .
ADD src, XOR src, etc .) without requiring that the value be first popped into an intermediate register or accumulator .

add		 @SP--	 	 	 ;	sum	the	last	three	words	pushed	onto	the	stack	

add		 @SP--	 	 	 ;	with	Acc,	disregarding	overflow

add		 @SP--

The stack pointer SP can be set explicitly, however only the lowest four bits are used and setting SP to 0Fh will return
it to its reset state .

Since the stack is 16 bits wide, it is possible to store two 8-bit register values on it in a single location . This allows more
efficient use of the stack if it is being used to save and restore registers at the start and end of a subroutine .
SubOne:

move	 PFX[0],	IC

push	 PSF	 	 	 ;	store	IC:PSF	on	the	stack

...

pop		 GR	 	 	 ;	16-bit	register

move	 IC,	GRH	 	 ;	IC	was	stored	as	high	byte

move	 PSF,	GRL	 	 ;	PSF	was	stored	as	low	byte	ret

19.10�Accessing�Data�Memory
Data memory is accessed through the data pointer registers DP[0] and DP[1] or the Frame Pointer BP[OFFS] . Once one
of these registers is set to a location in data memory, that location can be read or written as follows, using the mnemonic
@DP[0], @DP[1] or @BP[OFFS] as a source or destination .

move	 DP[0],	#0000h	 	 ;	set	pointer	to	location	0000h

move	 A[0],	@DP[0]		 	 ;	read	from	data	memory

move	 @DP[0],	#55h		 	 ;	write	to	data	memory

� �Maxim�Integrated�� � 19-17

MAX31782 User’s Guide

Revision 0; 8/11

Either of the data pointers may be post-incremented or post-decremented following any read or may be pre-increment-
ed or predecremented before any write access by using the following syntax .

move	 A[0],	@DP[0]++	 	 ;	increment	DP[0]	after	read

move	 @++DP[0],	A[1]	 	 ;	increment	DP[0]	before	write

move	 A[5],	@DP[1]--	 	 ;	decrement	DP[1]	after	read

move	 @--DP[1],	#00h	 	 ;	decrement	DP[1]	before	write

The Frame Pointer (BP[OFFS]) is actually composed of a base pointer (BP) and an offset from the base pointer (OFFS) .
For the frame pointer, the offset register (OFFS) is the target of any increment or decrement operation . The base pointer
(BP) is unaffected by increment and decrement operations on the Frame Pointer . Similar to DP[n], the OFFS register
may be preincremented/decremented when writing to data memory and may be post-incremented/decremented when
reading from data memory .

move	 A[0],	@BP[OFFS--]	 	 ;	decrement	OFFS	after	read

move	 @BP[++OFFS],	A[1]	 	 ;	increment	OFFS	before	write

All three data pointers support both byte and word access to data memory . Each data pointer has its own word/byte
select (WBSn) special-function register bit to control the access mode associated with the data pointer . These three
register bits (WBS2, which controls BP[OFFS] access; WBS1, which controls DP[1] access; and WBS0, which controls
DP[0] access) reside in the Data Pointer Control (DPC) register . When a given WBSn control bit is configured to 1, the
associated pointer is operated in the word access mode . When the WBSn bit is configured to 0, the pointer is operated
in the byte access mode . Word access mode allows addressing of 64kWords of memory while byte access mode allows
addressing of 64kBytes of memory .

Each data pointer (DP[n]) and Frame Pointer base (BP) register is actually implemented internally as a 17-bit register
(e .g ., 16:0) . The Frame Pointer offset register (OFFS) is implemented internally as a 9-bit register (e .g ., 8:0) . The WBSn
bit for the respective pointer controls whether the highest 16 bits (16:1) of the pointer are in use, as is the case for word
mode (WBSn = 1) or whether the lowest 16 bits (15:0) are in use, as will be the case for byte mode (WBSn = 0) . The
WBS2 bit also controls whether the high 8 bits (8:1) of the offset register are in use (WBS2 = 1) or the low 8 bits (7:0)
are used (WBS2 = 0) . All data pointer register reads, writes, auto-increment/decrement operations occur with respect
to the current WBSn selection . Data pointer increment and decrement operations only affect those bits specific to the
current word or byte addressing mode (e .g ., incrementing a byte mode data pointer from FFFFh does not carry into
the internal high order bit that is utilized only for word mode data pointer access) . Switching from byte to word access
mode or vice versa does not alter the data pointer contents . Therefore, it is important to maintain the consistency of
data pointer address value within the given access mode .

move	 DPC,	#0	 	 	 ;	DP[0]	in	byte	mode

move	 DP[0],	#2345h	 	 ;	DP[0]=2345h	(byte	mode)

	 	 	 	 	 	 ;	internal	bits	15:0	loaded

move	 DPC,	#4	 	 	 ;	DP[0]	in	word	mode

move	 DP[0],	#2345h	 	 ;	DP[0]=2345h	(word	mode)

	 	 	 	 	 	 ;	internal	bits	16:1	loaded

move	 DPC,	#0	 	 	 ;	DP[0]	in	byte	mode

move	 GR,	DP[0]	 	 	 ;	GR	=	468Bh	(looking	at	bits	15:0)

The three pointers share a single read/write port on the data memory and thus, the user must knowingly activate a
desired pointer before using it for data memory read operations . This can be done explicitly using the data pointer
select bits (SDPS1:0; DPC .1:0), or implicitly by writing to the DP[n], BP, or OFFS registers as shown below . Any indirect
memory write operation using a data pointer will set the SDPS bits, thus activating the write pointer as the active source
pointer .

move	 DPC,	#2	 	 ;	(explicit)	selection	of	FP	as	the	pointer

move	 DP[1],	DP[1]		 ;	(implicit)	selection	of	DP[1];	set	SDPS1:0=01b

move	 OFFS,	src	 	 ;	(implicit)	selection	of	FP;	set	SDPS1=1

move	 @DP[0],	src	 	 ;	(implicit)	selection	of	DP[0];	set	SDPS1:0=00b

� � Maxim�Integrated�� � 19-18

MAX31782 User’s Guide

Revision 0; 8/11

Once the pointer selection has been made, it remains in effect until:

• The source data pointer select bits are changed via the explicit or implicit methods described above (i .e ., another
data pointer is selected for use) .

• The memory to which the active source data pointer is addressing is enabled for code fetching using the Instruction
Pointer . Or,

• A memory write operation is performed using a data pointer other than the current active source pointer .
move	 DP[1],	DP[1]		 ;	select	DP[1]	as	the	active	pointer

move	 dst,	@DP[1]	 	 ;	read	from	pointer

move	 @DP[1],	src	 	 ;	write	using	a	data	pointer

	 	 	 	 	 ;	DP[0]	is	needed

move	 DP[0],	DP[0]		 ;	select	DP[0]	as	the	active	pointer

To simplify data pointer increment/decrement operations without disturbing register data, a virtual NUL destination has
been assigned to system module 6, sub-index 7 to serve as a bit bucket . Data pointer increment/decrement operations
can be done as follows with- out altering the contents of any other register:

move	 NUL,	@DP[0]++	 ;	increment	DP[0]

move	 NUL,	@DP[0]--	 ;	decrement	DP[0]

The following data pointer related instructions are invalid:
move	@++DP[0],	@DP[0]++

move	@++DP[1],	@DP[1]++

move	@BP[++OFFS],	@BP[OFFS++]

move	@--DP[0],	@DP[0]--

move	@--DP[1],	@DP[1]--

move	@BP[--OFFS],	@BP[OFFS--]

move	@++DP[0],	@DP[0]--

move	@++DP[1],	@DP[1]--

move	@BP[++OFFS],	@BP[OFFS--]

move	@--DP[0],	@DP[0]++

move	@--DP[1],	@DP[1]++

move	@BP[--OFFS],	@BP[OFFS++]

move	@DP[0],	@DP[0]++

move	@DP[1],	@DP[1]++

move	@BP[OFFS],	@BP[OFFS++]

move	@DP[0],	@DP[0]--

move	@DP[1],	@DP[1]--

move	@BP[OFFS],	@BP[OFFS--]

move	DP[0],	@DP[0]++

move	DP[0],	@DP[0]--

move	DP[1],	@DP[1]++

move	DP[1],	@DP[1]--

move	OFFS,	@BP[OFFS--]

move	OFFS,	@BP[OFFS++]

� � Maxim�Integrated�� � 20-1

MAX31782 User’s Guide

Revision 0; 8/11

SECTION 20: INSTRUCTION SET SUMMARY

Table�20-1.�Instruction�Set�Summary

MNEMONIC DESCRIPTION
16-BIT�INSTRUCTION�

WORD
STATUS�BITS�

AFFECTED
AP�INC/

DEC
NOTES

L
O

G
IC

A
L

�O
P

E
R

A
T

IO
N

S

AND src Acc ←	Acc AND src f001 1010 ssss ssss S, Z Y 1

OR src Acc ←	Acc OR src f010 1010 ssss ssss S, Z Y 1

XOR src Acc ←	Acc XOR src f011 1010 ssss ssss S, Z Y 1

CPL Acc ←	~Acc 1000 1010 0001 1010 S, Z Y

NEG Acc ←	~Acc + 1 1000 1010 1001 1010 S, Z Y

SLA Shift Acc left arithmetically 1000 1010 0010 1010 C, S, Z Y

SLA2 Shift Acc left arithmetically twice 1000 1010 0011 1010 C, S, Z Y

SLA4
Shift Acc left arithmetically four
times

1000 1010 0110 1010 C, S, Z Y

RL Rotate Acc left (w/o C) 1000 1010 0100 1010 S Y

RLC Rotate Acc left (through C) 1000 1010 0101 1010 C, S, Z Y

SRA Shift Acc right arithmetically 1000 1010 1111 1010 C, Z Y

SRA2
Shift Acc right arithmetically
twice

1000 1010 1110 1010 C, Z Y

SRA4
Shift Acc right arithmetically four
times

1000 1010 1011 1010 C, Z Y

SR Shift Acc right (0 → msbit) 1000 1010 1010 1010 C, S, Z Y

RR Rotate Acc right (w/o C) 1000 1010 1100 1010 S Y

RRC Rotate Acc right (though C) 1000 1010 1101 1010 C, S, Z Y

B
IT

�O
P

E
R

A
T

IO
N

S

MOVE C, Acc . C ←	Acc . 1110 1010 bbbb 1010 C

MOVE C, #0 C ←	0 1101 1010 0000 1010 C

MOVE C, #1 C ←	1 1101 1010 0001 1010 C

CPL C C ←	~C 1101 1010 0010 1010 C

MOVE Acc ., C Acc . ←	C 1111 1010 bbbb 1010 S, Z

AND Acc . C ←	C AND Acc . 1001 1010 bbbb 1010 C

OR Acc . C ←	C OR Acc . 1010 1010 bbbb 1010 C

XOR Acc . C ←	C XOR Acc . 1011 1010 bbbb 1010 C

MOVE dst ., #1 dst . ←	1 1ddd dddd 1bbb 0111 C, S, E, Z 2

MOVE dst ., #0 dst . ←	0 1ddd dddd 0bbb 0111 C, S, E, Z 2

MOVE C, src . C ←	src . fbbb 0111 ssss ssss C

M
A

T
H

ADD src Acc ←	Acc + src f100 1010 ssss ssss C, S, Z, OV Y 1

ADDC src Acc ←	Acc + (src + C) f110 1010 ssss ssss C, S, Z, OV Y 1

SUB src Acc ←	Acc – src f101 1010 ssss ssss C, S, Z, OV Y 1

SUBB src Acc ←	Acc – (src + C) f111 1010 ssss ssss C, S, Z, OV Y 1

� � Maxim�Integrated�� � 20-2

MAX31782 User’s Guide

Revision 0; 8/11

Table�20-1.�Instruction�Set�Summary�(continued)

Note�1: The active accumulator (Acc) is not allowed as the src in operations where it is the implicit destination .
Note�2: Only module 8 and modules 0-5 (when implemented for a given product) are supported by these single-cycle bit operations .

Potentially affects C or E if PSF register is the destination . Potentially affects S and/or Z if AP or APC is the destination .
Note�3: The terms Acc and A[AP] can be used interchangeably to denote the active accumulator .
Note�4: Any index represented by or found inside [] brackets is considered variable, but required .
Note�5: The active accumulator (Acc) is not allowed as the dst if A[AP] is specified as the src .
Note�6: The ‘{L/S}’ prefix is optional .
Note�7: Instructions that attempt to simultaneously push/pop the stack (e .g . PUSH @SP--, PUSH @SPI--, POP @++SP, POPI

@++SP) or modify SP in a conflicting manner (e .g ., MOVE SP, @SP--) are invalid .
Note�8: Special cases: If ‘MOVE APC, Acc’ sets the APC .CLR bit, AP will be cleared, overriding any auto-inc/dec/modulo opera-

tion specified for AP . If ‘MOVE AP, Acc’ causes an auto-inc/dec/modulo operation on AP, this overrides the specified data
transfer (i .e ., Acc will not be transferred to AP) .

MNEMONIC DESCRIPTION
16-BIT�INSTRUCTION�

WORD
STATUS�BITS�

AFFECTED
AP�INC/

DEC
NOTES

B
R

A
N

C
H

IN
G

{L/S}JUMP src IP ←	 IP + src or src f000 1100 ssss ssss 6

{L/S}JUMP C, src If C=1, IP ←	 (IP + src) or src f010 1100 ssss ssss 6

{L/S}JUMP NC, src If C=0, IP ←	 (IP + src) or src f110 1100 ssss ssss 6

{L/S}JUMP Z, src If Z=1, IP ←	 (IP + src) or src f001 1100 ssss ssss 6

{L/S}JUMP NZ, src If Z=0, IP ←	 (IP + src) or src f101 1100 ssss ssss 6

{L/S}JUMP E, src If E=1, IP ←	 (IP + src) or src 0011 1100 ssss ssss 6

{L/S}JUMP NE, src If E=0, IP ←	 (IP + src) or src 0111 1100 ssss ssss 6

{L/S}JUMP S, src If S=1, IP ←	 (IP + src) or src f100 1100 ssss ssss 6

{L/S}DJNZ LC[n], src If --LC[n] <> 0, IP ←	 (IP + src)
or src

f10n 1101 ssss ssss 6

{L/S}CALL src @++SP ←	 IP+1; IP ←	 (IP+src)
or src

f011 1101 ssss ssss 6,7

RET IP ←	@SP-- 1000 1100 0000 1101

RET C If C=1, IP ←	@SP-- 1010 1100 0000 1101

RET NC If C=0, IP ←	@SP-- 1110 1100 0000 1101

RET Z If Z=1, IP ←	@SP-- 1001 1100 0000 1101

RET NZ If Z=0, IP ←	@SP-- 1101 1100 0000 1101

RET S If S=1, IP ←	@SP-- 1100 1100 0000 1101

RETI IP ←	@SP-- ; INS ←	0 1000 1100 1000 1101

RETI C If C=1, IP ←	@SP-- ; INS ←	0 1010 1100 1000 1101

RETI NC If C=0, IP ←	@SP-- ; INS ←	0 1110 1100 1000 1101

RETI Z If Z=1, IP ←	@SP-- ; INS ←	0 1001 1100 1000 1101

RETI NZ If Z=0, IP ←	@SP-- ; INS ←	0 1101 1100 1000 1101

RETI S If S=1, IP ←	@SP-- ; INS ←	0 1100 1100 1000 1101

D
A

T
A

�T
R

A
N

S
F

E
R XCH Swap Acc bytes 1000 1010 1000 1010 S Y

XCHN Swap nibbles in each Acc byte 1000 1010 0111 1010 S Y

MOVE dst, src Dst ←	src fddd dddd ssss ssss C, S, Z, E (Note 8) 7, 8

PUSH src @++SP ←	src f000 1101 ssss ssss 7

POP dst Dst ←	@SP-- 1ddd dddd 0000 1101 C, S, Z, E 7

POPI dst Dst ←	@SP-- ; INS ←	0 1ddd dddd 1000 1101 C, S, Z, E 7

CMP src E ←	 (Acc = src) f111 1000 ssss ssss E

NOP No operation 1101 1010 0011 1010

�Maxim�Integrated� 20-3

MAX31782 User’s Guide

ADD/ADDC�src� Add/Add�with�Carry

Description: The ADD instruction sums the active accumulator (Acc or A[AP]) and the specified src data and
stores the result back to the active accumulator . The ADDC instruction additionally includes the
Carry (C) Status Flag in the sum- mation . For the complete list of src specifiers, reference the MOVE
instruction . Because the source field is limited to 8 bits, the PFX[n] register is used to supply the
high-byte of data for 16 bit sources .

Status�Flags:� C, S, Z, OV

ADD�Operation: Acc ←	Acc + src

Encoding: 15 0

f100 1010 ssss ssss

Example(s): ; Acc = 2345h for each example

 ADD A[3] ; A[3]=FF0Fh

 ; → Acc =2254h,C=1, Z=0, S=0, OV=0

 ADD #0C0h ; → Acc =2405h,C=0, Z=0, S=0, OV=0

 ADD A[4] ; A[4]=C000h

 ; → Acc = E345h, C=0, Z=0, S=1, OV=0

 ADD A[5] ; A[5]=6789h

 ; → Acc = 8ACEh, C=0, Z=0, S=1, OV=1

ADDC�Operation: Acc ← Acc + C + src

Encoding: 15 0

f110 1010 ssss ssss

Example(s): ; Acc = 2345h for each example

 ADDC A[3] ; A[3] = DCBAh, C=1

 ; → Acc = 0000h, C=1, Z=1, S=0, OV=0

 ADDC @DP[0]-- ; @DP[0] = 00EEh, C=1

 ; → Acc = 2434h, C=0, Z=0, S=0, OV=0

Special�Notes: The active accumulator (Acc) is not allowed as the src for these operations .

� � Maxim�Integrated�� � 20-4

MAX31782 User’s Guide

Revision 0; 8/11

AND�src� Logical�AND

Description: Performs a logical-AND between the active accumulator (Acc) and the specified src data . For the
complete list of src specifiers, reference the MOVE instruction . Because the source field is limited
to 8 bits, the PFX[n] register is used to supply the high-byte of data for 16 bit sources .

Status�Flags: S, Z

Operation: Acc ← Acc AND src

Encoding: 15 0

f001 1010 ssss ssss

Example(s): ; Acc = 2345h for each example

 AND A[3] ; A[3]=0F0Fh

 ; → Acc = 0305h, S=0, Z=0

 AND #33h ; → Acc = 0001h

 AND #2233h ; generates object code below

 ; MOVE PFX[0], #22h (smart-prefixing)

 ; AND #33h

 ; → Acc = 2201h

 MOVE PFX[0], #0Fh

 AND M0[8] ; M0[8]=0Fh (assume M0[8] is an 8-bit register)

 ; → Acc = 0305h

Special�Notes: The active accumulator (Acc) is not allowed as the src for this operation .

AND�Acc.� Logical�AND�Carry�Flag�with�Accumulator�Bit

Description: Performs a logical-AND between the Carry (C) status flag and a specified bit of the active accumu-
lator (Acc .) and returns the result to the Carry .

Status�Flags: C

Operation: C ← C AND Acc .

Encoding: 15 0

1001 1010 bbbb 1010

Example(s): ; Acc = 2345h, C=1 at start

 AND Acc .0 ; Acc .0=1 → C=1

 AND Acc .1 ; Acc .1=0 → C=0

 AND C, Acc .8 ; Acc .8=1 → C=0

� � Maxim�Integrated�� � 20-5

MAX31782 User’s Guide

Revision 0; 8/11

{L/S}CALL�src� {Long/Short}�Call�to�Subroutine

Description: Performs a call to the subroutine destination specified by src . The CALL instruction uses an 8-bit
immediate src to perform a relative short call (IP +127/-128 words) . The CALL instruction uses a
16-bit immediate src to perform an absolute long CALL to the specified 16-bit address . The PFX[0]
register is used to supply the high byte of a 16-bit immediate address for the absolute long CALL .
Using the optional ‘L’ prefix (i .e ., LCALL) results in an absolute long call and use of the PFX[0]
register . Using the optional ‘S’ prefix (i .e ., SCALL) attempts to generate a relative short call, but is
flagged by the assembler if the destination is out of range . Specifying an internal register src always
produces an absolute CALL to a 16-bit address, thus the ‘L’ and ‘S’ prefixes should not be used .

Status�Flags: None

Operation: @++SP ← IP + 1 PUSH

 IP ← src Absolute CALL

 IP ← IP + src Relative CALL

Encoding: 15 0

f011 1101 ssss ssss

Example(s): CALL label1 ; relative call to label1 (must be within IP +127/ -

 ; 128 address range)

 CALL label1 ; absolute call to label1 = 0120h

 ; MOVE PFX[0], #01h

 ; CALL #20h .

 CALL DP[0] ; DP[0] holds 16-bit address of subroutine

 LCALL label1 ; label=0120h and is relative to this instruction

 ; absolute call is forced by use of ‘L’ prefix

 ; MOVE PFX[0], #01h

 ; CALL #20h

 SCALL label1 ; relative offset for label1 calculated and used

 ; if label1 is not relative, assembler will generate an error

 SCALL #10h ; relative offset of #10h is used directly by the CALL

� � Maxim�Integrated�� � 20-6

MAX31782 User’s Guide

Revision 0; 8/11

CMP�src� Compare�Accumulator

Description: Compare for equality between the active accumulator and the least significant byte of the speci-
fied src . Because the source is limited to 8 bits, the PFX[n] register is used to supply the high-byte
of data for 16 bit sources .

Status�Flags: E

Operation: Acc = src: E ← 1

 Acc <> src: E ← 0

Encoding: 15 0

f111 1000 ssss ssss

Example(s): CMP #45h ; Acc = 0145h, E=0

 CMP #145h ; PFX[0] register used

 ; MOVE PFX[0], #01h (smart-prefixing)

 ; CMP #45h E=1

CPL� Complement�Acc

Description: Performs a logical bitwise complement (1’s complement) on the active accumulator (Acc or A[AP])
and returns the result to the active accumulator .

Status�Flags: S, Z

Operation: Acc ← ~Acc

Encoding: 15 0

1000 1010 0001 1010

Example(s): ; Acc = FFFFh, S=1, Z=0

 CPL ; Acc ← 0000h, S=0, Z=1

 ; Acc = 0990h, S=0, Z=0

 CPL ; Acc ← F66Fh, S=1, Z=0

� �Maxim�Integrated�� � 20-7

MAX31782 User’s Guide

Revision 0; 8/11

CPL�C� Complement�Carry�Flag

Description: Logically complements the Carry (C) Flag .

Status�Flags: C

Operation: C ← ~C

Encoding: 15 0

1101 1010 0010 1010

Example(s): ; C = 0

 CPL C ; C ← 1

{L/S}DJNZ�LC[n],�src� Decrement�Counter,�{Long/Short}�Jump�Not�Zero

Description: The DJNZ LC[n], src instruction performs a conditional branch based upon the associated Loop
Counter (LC[n]) reg- ister . The DJNZ LC[n], src instruction decrements the LC[n] loop counter
and branches to the address defined by src if the decremented counter has not reached 0000h .
Program branches can be relative or absolute depending upon the src specifier and may be quali-
fied by using the ‘L’ or ‘S’ prefixes as documented in the JUMP src op code .

Status�Flags: None

Operation: LC[n] ← LC[n] -1

 LC[n] <> 0: IP ← IP + src (relative) -or- src (absolute)

 LC[n] = 0: IP ← IP + 1

Encoding: 15 0

f10n 1101 ssss ssss

Example(s): MOVE LC[1], #10h ; counter = 10h

 Loop:

 ADD @DP[0]++ ; add data memory contents to Acc, post-inc DP[0]

 DJNZ LC[1], Loop ; 16 times before falling through

� � Maxim�Integrated�� � 20-8

MAX31782 User’s Guide

Revision 0; 8/11

{L/S}�JUMP�src� Unconditional�{Long/Short}�Jump

Description: Performs an unconditional jump as determined by the src specifier . The JUMP instruction uses an
8-bit immediate src to perform a relative jump (IP +127/-128 words) . The JUMP instruction uses
a 16-bit immediate src to perform an absolute JUMP to the specified 16-bit address . The PFX[0]
register is used to supply the high byte of a 16-bit immediate address for the absolute JUMP .
Using the optional ‘L’ prefix (i .e ., LJUMP) results in an absolute long jump and use of the PFX[0]
register . Using the optional ‘S’ prefix (i .e ., SJUMP) attempts to generate a relative short jump, but
will be flagged by the assembler if the destination is out of range . Specifying an internal register
src always produces an absolute JUMP to a 16-bit address, thus the ‘L’ and ‘S’ prefixes should not
be used .

Status�Flags: None

Operation: IP ← src Absolute JUMP

 IP ← IP + src Relative JUMP

Encoding: 15 0

f000 1100 ssss ssss

Example(s): JUMP label1 ; relative jump to label1 (must be within range

 ; IP +127/-128 words)

 JUMP label1 ; absolute jump to label1= 0400h

 ; MOVE PFX[0], #04h

 ; JUMP #00h

 JUMP DP[0] ; absolute jump to addr16 DP[0]

 LJUMP label1 ; label=0120h and is relative to this instruction

 ; absolute jump is forced by use of ‘L’ prefix

 ; MOVE PFX[0], #01h

 ; JUMP #20h

 SJUMP label1 ; relative offset for label1 calculated and used

 ; if label1 is not relative, assembler will generate an error

 SJUMP #10h relative offset of #10h is used directly by the JUMP

� � Maxim�Integrated�� � 20-9

MAX31782 User’s Guide

Revision 0; 8/11

{L/S}JUMP�C/{L/S}JUMP�NC,�src,� Conditional {Long/Short} Jump on Status Flag
L/S}JUMP�Z/{L/S}JUMP�NZ,�src,�
{{L/S}JUMP�E/{L/S}JUMP�NE,�src,�
{L/S}JUMP�S,�src

Description: Performs conditional branching based upon the state of a specific processor status flag . JUMP C
results in a branch if the Carry flag is set while JUMP NC branches if the Carry flag is clear . JUMP
Z results in a branch if the Zero flag is set while JUMP NZ branches if the Zero flag is clear . JUMP E
results in a branch if the Equal flag is set while JUMP NE branches if the Equal flag is clear . JUMP S
results in a branch if the Sign flag is set . Program branches can be relative or absolute depending
upon the src specifier and may be qualified by using the ‘L’ or ‘S’ prefixes as docu- mented in the
JUMP src op code . Special src restrictions apply to JUMP E and JUMP NE .

Status�Flags:� None

JUMP�C C=1: IP ← IP + src (relative) -or- src (absolute)

Operation: C=0: IP ← IP + 1

Encoding: 15 0

f010 1100 ssss ssss

Example(s):� JUMP C, label1 ; C=0, branch not taken

JUMP�NC C=0: IP ← IP + src (relative) -or- src (absolute)

Operation: C=1: IP ← IP +1

Encoding: 15 0

f110 1100 ssss ssss

Example(s):� JUMP NC, label1 ; C=0, branch taken

JUMP�Z Z=1: IP ← IP + src

Operation: Z=0: IP ← IP + 1

Encoding: 15 0

f001 1100 ssss ssss

Example(s):� JUMP Z, label1 ; Z=1, branch taken

� �Maxim�Integrated�� � 20-10

MAX31782 User’s Guide

Revision 0; 8/11

JUMP�NZ Z=0: IP ← IP + src (relative) -or- src (absolute)

Operation: Z=1: IP ← IP + 1

Encoding: 15 0

f101 1100 ssss ssss

Example(s):� JUMP NZ, label1 ; Z=1, branch taken

JUMP�E E=1: IP ← IP + src (relative) -or- src (absolute)

Operation: E=0: IP ← IP + 1

Encoding: 15 0

0011 1100 ssss ssss

Example(s): JUMP E, label1 ; E=1, branch taken

Special�Notes:� The src specifier must be immediate data .

JUMP�NE

Operation: E=0: IP ← IP + src (relative) -or- src (absolute)

 E=1: IP ← IP + 1

Encoding: 15 0

0111 1100 ssss ssss

Example(s): JUMP NE, label1 ; E=0, branch taken

Special�Notes:� The src specifier must be immediate data .

JUMP�S S=1: IP ← IP + src (relative) -or- src (absolute)

Operation: S=0: IP ← IP + 1

Encoding: 15 0

f100 1100 ssss ssss

Example(s):� JUMP S, label1 ; S=0, branch not taken

� � Maxim�Integrated�� � 20-11

MAX31782 User’s Guide

Revision 0; 8/11

MOVE�dst,�src� Move�Data

Description: Moves data from a specified source (src) to a specified destination (dst) . A list of defined source,
destination spec- ifiers is given in the table below . Also, since src can be either 8-bit (byte) or 16-bit
(word) data, the rules governing data transfer are also explained below in the encoding section .

Status�Flags: S, Z (if dst is Acc or AP or APC) C, E (if dst is PSF)

Operation: dst ← src

Encoding: 15 0

fddd dddd ssss ssss

Table�20-2.�Source�Specifier�Codes
src src�Bit�Encoding�(f�ssssssss) WIDTH�(16�or�8) DESCRIPTION
#k 0 kkkk kkkk 8 kkkkkkkk = Immediate (Literal) Data

MN[n] 1 nnnn 0NNN 8/16
nnnn Selects One of First 16 Registers in Module NNN;
where NNN= 0 to 5 . Access to Second 16 using PFX[n] .

AP 1 0000 1000 8 Accumulator Pointer
APC 1 0001 1000 8 Accumulator Pointer Control
PSF 1 0100 1000 8 Processor Status Flag Register
IC 1 0101 1000 8 Interrupt and Control Register

IMR 1 0110 1000 8 Interrupt Mask Register
SC 1 1000 1000 8 System Control Register
IIR 1 1011 1000 8 Interrupt Identification Register

CKCN 1 1110 1000 8 Clock Control Register
WDCN 1 1111 1000 8 Watchdog Control Register
A[n] 1 nnnn 1001 16 nnnn Selects One of 16 Accumulators
Acc 1 0000 1010 16 Active Accumulator = A[AP] . Update AP per APC

A[AP] 1 0001 1010 16 Active Accumulator = A[AP] . No change to AP
IP 1 0000 1100 16 Instruction Pointer

@SP-- 1 0000 1101 16 16-Bit Word @SP, Post-Decrement SP
SP 1 0001 1101 16 Stack Pointer
IV 1 0010 1101 16 Interrupt Vector

LC[n] 1 011n 1101 16 n Selects 1 of 2 Loop Counter Registers
@SPI-- 1 1000 1101 16 16-bit word @SP, Post-Decrement SP, INS=0

@BP[Offs] 1 0000 1110 8/16 Data Memory @BP[Offs]
@BP[Offs++] 1 0001 1110 8/16 Data memory @BP[Offs]; Post Increment OFFS
@BP[Offs--] 1 0010 1110 8/16 Data Memory @BP[Offs]; Post Decrement OFFS

OFFS 1 0011 1110 8 Frame Pointer Offset from Base Pointer (BP)
DPC 1 0100 1110 16 Data Pointer Control Register
GR 1 0101 1110 16 General Register

GRL 1 0110 1110 8 Low Byte of GR Register
BP 1 0111 1110 16 Frame Pointer Base Pointer (BP)

GRS 1 1000 1110 16 Byte-Swapped GR Register
GRH 1 1001 1110 8 High Byte of GR Register
GRXL 1 1010 1110 16 Sign Extended Low Byte of GR Register

FP 1 1011 1110 16 Frame Pointer (BP[Offs])
@DP[n] 1 0n00 1111 8/16 Data Memory @DP[n]

@DP[n]++ 1 0n01 1111 8/16 Data Memory @DP[n], Post-Increment DP[n]
@DP[n]-- 1 0n10 1111 8/16 Data Memory @DP[n], Post-Decrement DP[n]

DP[n] 1 0n11 1111 16 n Selects 1 of 2 Data Pointers

�Maxim�Integrated�� � 20-12

MAX31782 User’s Guide

Revision 0; 8/11

MOVE�dst,�src�(continued)� Move�Data

Table�20-3.�Destination�Specifier�Codes

Data�Transfer dst (16-bit) ← src (16-bit): dst[15:0] ← src[15:0]

Rules dst (8-bit) ← src (8-bit): dst[7:0] ← src[7:0]

 dst (16-bit) ← src (8-bit): dst[15:8] ← 00h *

 dst[7:0] ← src[7:0]

 dst (8-bit) ← src (16-bit): dst[7:0] ← src[7:0]

*Note: The PFX[0] register may be used to supply a separate high-order data byte for this type of transfer .

dst
dst�Bit�Encoding

(ddd�dddd)
WIDTH�(16�OR�8) DESCRIPTION

NUL 111 0110 8/16
Null (Virtual) Destination . Intended as a bit bucket to assist soft-
ware with pointer increments/decrements .

MN[n] nnn 0NNN 8/16
nnnn Selects One of First 8 Registers in Module NNN; where
NNN= 0 to 5 . Access to Next 24 Using PFX[n] .

AP 000 1000 8 Accumulator Pointer
APC 001 1000 8 Accumulator Pointer Control
PSF 100 1000 8 Processor Status Flag Register
IC 101 1000 8 Interrupt and Control Register

IMR 110 1000 8 Interrupt Mask Register
A[n] nnn 1001 16 nnn Selects 1 of First 8 Accumulators: A[0] . .A[7]
Acc 000 1010 16 Active Accumulator = A[AP]

PFX[n] nnn 1011 8 nnn Selects One of 8 Prefix Registers
@++SP 000 1101 16 16-Bit Word @SP, Pre-Increment SP

SP 001 1101 16 Stack Pointer
IV 010 1101 16 Interrupt Vector

LC[n] 11n 1101 16 n Selects 1 of 2 Loop Counter Registers
@BP[Offs] 000 1110 8/16 Data Memory @BP[Offs]

@BP[++Offs] 001 1110 8/16 Data Memory @BP[Offs]; Pre-Increment OFFS
@BP[--Offs] 010 1110 8/16 Data Memory @BP[Offs]; Pre-Decrement OFFS

OFFS 011 1110 8 Frame Pointer Offset from Base Pointer (BP)
DPC 100 1110 16 Data Pointer Control Register
GR 101 1110 16 General Register

GRL 110 1110 8 Low Byte of GR Register
BP 111 1110 16 Frame Pointer Base Pointer (BP)

@DP[n] n00 1111 8/16 Data Memory @DP[n]
@++DP[n] n01 1111 8/16 Data Memory @DP[n], Pre-Increment DP[n]
@--DP[n] n10 1111 8/16 Data Memory @DP[n], Pre-Decrement DP[n]

DP[n] n11 1111 16 n Selects 1 of 2 Data Pointers
2-CYCLE�DESTINATION�ACCESS�USING�PFX[n]�REGISTER�(See�Special�Notes)

SC 000 1000 8 System Control Register
CKCN 110 1000 8 Clock Control Register
WDCN 111 1000 8 Watchdog Control Register
A[n] nnn 1001 16 nnn Selects 1 of Second 8 Accumulators A[8] . .A[15]
GRH 001 1110 8 High Byte of GR Register

� � Maxim�Integrated�� � 20-13

MAX31782 User’s Guide

Revision 0; 8/11

Example(s): MOVE A[0], A[3] ; A[0] ← A[3]

 MOVE DP[0], #110h ; DP[0] ← #0110h (PFX[0] register used)

 ; MOVE PFX[0], #01h (smart-prefixing)

 ; MOVE DP[0], #10h

 MOVE DP[0], #80h ; DP[0] ← #0080h (PFX[0] register not needed)

Special�Notes: Proper loading of the PFX[n] registers, when for the purpose of supplying 16-bit immediate data
or accessing 2-cycle destinations, is handled automatically by the assembler and is therefore an
optional step for the user when writing assembly source code . Examples of the automatic PFX[n]
code insertion by the assembler are demonstrated below .

 Initial�Assembly�Code� Assembler�Output

 MOVE DP[0], #0100h MOVE PFX[0], #01h

 MOVE A[15], A[7] MOVE PFX[2], anysrc

 MOVE A[7], A[7]

 MOVE A[8], #3040h

 MOVE PFX[2], #30h MOVE A[0], #40h

MOVE�Acc.,�C� Move�Carry�Flag�to�Accumulator�Bit

Description: Replaces the specified bit of the active accumulator with the Carry bit .

Status�Flags: S, Z

Operation: Acc . ← C

Encoding: 15 0

1111 1010 bbbb 1010

Example(s): ; Acc = 8000h, S=1, Z=0, C=0

 MOVE Acc .15, C ; Acc = 0000h, S=0, Z=1

� �Maxim�Integrated�� � 20-14

MAX31782 User’s Guide

Revision 0; 8/11

MOVE�C,�Acc.� Move�Accumulator�Bit�to�Carry�Flag

Description: Replaces the Carry (C) status flag with the specified active accumulator bit .

Status�Flags: C

Operation: C ← Acc .

Encoding: 15 0

1110 1010 bbbb 1010

Example(s): ; Acc = 01C0h, C=0

 MOVE C, Acc .8 ; C =1

MOVE�C,�src.� Move�Bit�to�Carry�Flag

Description: Replaces the Carry (C) status flag with the specified source bit src . .

Status�Flags: C

Operation: C ← src .

Encoding: 15 0

fbbb 0111 ssss ssss

Example(s): ; M0[0] = FEh; C=1 (assume M0[0] is an 8-bit register)

 MOVE C, M0[0] .0 ; C=0

MOVE�C,�#0� Clear�Carry�Flag

Description: Clears the Carry (C) processor status flag .

Status�Flag: C ← 0

Operation: C ← 0

Encoding: 15 0

1101 1010 0000 1010

Example(s): ; C = 1

 MOVE C, #0 ; C ← 0

� Maxim�Integrated�� � 20-15

MAX31782 User’s Guide

Revision 0; 8/11

MOVE�C,�#1� Set�Carry�Flag

Description: Sets the Carry (C) processor status flag .

Status�Flag: C ← 1

Operation: C ← 1

Encoding: 15 0

1101 1010 0001 1010

Example(s): ; C = 0

 MOVE C, #1 ; C ← 1

MOVE�dst.,�#0� Clear�Bit

Description: Clears the bit specified by dst . .

Status�Flags: C, E (if dst is PSF), S, Z

Operation: dst . ← 0

Encoding: 15 0

1ddd dddd 0bbb 0111

Example(s): ; M0[0] = FEh

 MOVE M0[0] .1, #0 ; M0[0] = FCh

 MOVE M0[0] .7, #0 ; M0[0] = 7Ch

Special�Notes: Only system module 8 and peripheral modules (0-5) are supported by MOVE dst ., #0 .

MOVE�dst.,�#1� Set�Bit

Description: Sets the bit specified by dst . .

Status�Flags: C, E (if dst is PSF), S, Z

Operation: dst . ← 1

Encoding: 15 0

1ddd dddd 1bbb 0111

Example(s): ; M0[0] = 00h

 MOVE M0[0] .1, #1 ; M0[0] = 02h

 MOVE M0[0] .7, #1 ; M0[0] = 82h

Special�Notes: Only system module 8 and peripheral modules (0-5) are supported by MOVE dst ., #1 .

� Maxim�Integrated�� � 20-16

MAX31782 User’s Guide

Revision 0; 8/11

NEG� Negate�Accumulator

Description: Performs a negation (two’s complement) of the active accumulator and returns the result back to
the active accumulator .

Status�Flags: S, Z

Operation: Acc ← ~Acc + 1

Encoding: 15 0

1000 1010 1001 1010

Example(s): ; Acc = FEEDh, S=1, Z=0

 NEG ; Acc = 0113h, S=0, Z=0

OR�src� Logical�OR

Description: Performs a logical-OR between the active accumulator (Acc or A[AP]) and the specified src data .
For the complete list of src specifiers, reference the MOVE instruction . Because the source is lim-
ited to 8 bits, the PFX[n] register is used to supply the high-byte of data for 16 bit sources .

Status�Flags: S, Z

Operation: Acc ← Acc OR src

Encoding: 15 0

f010 1010 ssss ssss

Example(s): ; Acc = 2345h for each example

 OR A[3] ; A[3]= 0F0Fh → Acc = 2F4Fh

 OR #1133h ; MOVE PFX[0], #11h (smart-prefixing)

 ; OR #33h → Acc = 3377h

Special�Notes: The active accumulator (Acc) is not allowed as the src for this operation .

� Maxim�Integrated� � 20-17

MAX31782 User’s Guide

Revision 0; 8/11

OR�Acc.� Logical�OR�Carry�Flag�with�Accumulator�Bit

Description: Performs a logical-OR between the Carry (C) status flag and a specified bit of the active accumula-
tor (Acc .) and returns the result to the Carry .

Status�Flags: C

Operation: C ← C OR Acc .

Encoding: 15 0

1010 1010 bbbb 1010

Example(s): ; Acc = 2345h, C=0 at start

 OR Acc .1 ; Acc .1=0 → C=0

 OR Acc .2 ; Acc .2=1 → C=1

POP�dst� Pop�Word�from�the�Stack

Description: Pops a single word from the stack (@SP) to the specified dst and decrements the stack pointer (SP) .

Status�Flags: S, Z (if dst = Acc or AP or APC) C, E (if dst = PSF)

Operation: dst ← @ SP--

Encoding: 15 0

1ddd dddd 0000 1101

Example(s): ; GR ← 1234h

 POP GR ; @DP[0] ← 76h (WBS0=0)

 POP @DP[0] ; @DP[0] ← 0876h (WBS0=1)

 Stack Data:

xxxxh

1234h ← SP (initial)

0876h ← SP (after POP GR)

xxxxh ← SP (after POP @DP[0])

xxxxh

� Maxim�Integrated�� � 20-18

MAX31782 User’s Guide

Revision 0; 8/11

POPI�dst� Pop�Word�from�the�Stack�Enable�Interrupts

Description: Pops a single word from the stack (@SP) to the specified dst and decrements the stack pointer
(SP) . Additionally, POPI returns the interrupt logic to a state in which it can acknowledge additional
interrupts .

Status�Flags: S, Z (if dst = Acc or AP or APC)

 C, E (if dst = PSF)

Operation: dst ← @ SP--

 INS ← 0

Encoding: 15 0

1ddd dddd 1000 1101

Example(s): See POP

PUSH�src� Push�Word�to�the�Stack

Description: Increments the stack pointer (SP) and pushes a single word specified by src to the stack (@SP) .

Status�Flags: None

Operation: SP ← ++SP

Encoding: 15 0

f000 1101 ssss ssss

Example(s): PUSH GR ; GR=0F3Fh

 PUSH #40h

 Stack Data:

xxxxh

0040h ← SP (after PUSH #40h)

0F3F ← SP (after PUSH GR)

xxxxh ← SP (initial)

xxxxh

� Maxim�Integrated�� � 20-19

MAX31782 User’s Guide

Revision 0; 8/11

RET� Return�from�Subroutine

Description: RET pops a single word from the stack (@SP) into the Instruction Pointer (IP) and decrements the
stack pointer (SP) . The decremented SP is saved as the new stack pointer (SP) .

Status�Flags: None

Operation: IP ← @ SP--

Encoding: 15 0

1000 1100 0000 1101

Example(s): RET

 Code Execution:

Addr�(IP) Op�Code

0311h . . .

0312h RET

0103h . . .

 Stack Data:

xxxxh

xxxxh

0103h ← SP (before RET)

xxxxh ← SP (after RET)

xxxxh

RET�C/RET�NC,�RET�Z/RET�NZ,�RET�S� Conditional�Return�on�Status�Flag

Description: Performs conditional return (RET) based upon the state of a specific processor status flag . RET C
returns if the Carry flag is set while RET NC returns if the Carry flag is clear . RET Z returns if the
Zero flag is set while RET NZ returns if the Zero flag is clear . RET S returns if the Sign flag is set .
See RET for additional information on the return operation .

Status�Flags:� None

RET�C C=1: IP ← @SP--

Operation: C=0: IP ← IP + 1

Encoding: 15 0

1010 1100 0000 1101

Example(s): RET C ; C=1, return (RET) is performed

� � Maxim�Integrated� 20-20

MAX31782 User’s Guide

Revision 0; 8/11

RET�NC

Operation: C=0: IP ← @SP--

 C=1: IP ← IP +1

Encoding: 15 0

1110 1100 0000 1101

Example(s):� RET NC ; C=1, return (RET) does not occur

RET�Z

Operation: Z=1: IP ← @SP--

 Z=0: IP ← IP + 1

Encoding: 15 0

1001 1100 0000 1101

Example(s):� RET Z ; Z=0, return (RET) does not occur

RET�NZ

Operation: Z=0: IP ← @SP--

 Z=1: IP ← IP +1

Encoding: 15 0

1101 1100 0000 1101

Example(s):� RET NZ ; Z=0, return (RET) is performed

RET�S

Operation: S=1: IP ← @SP--

 S=0: IP ← IP + 1

Encoding: 15 0

1100 1100 0000 1101

Example(s):� RET S ; S=0, return (RET) does not occur

� � Maxim�Integrated� 20-21

MAX31782 User’s Guide

Revision 0; 8/11

RETI� Return�from�Interrupt

Description: RETI pops a single word from the stack (@SP) into the Instruction Pointer (IP) and decrements the
stack pointer (SP) . Additionally, RETI returns the interrupt logic to a state in which it can acknowl-
edge additional interrupts .

Status�Flags: None

Operation: IP ← @SP--

 INS ← 0

Encoding: 15 0

1000 1100 1000 1101

Example(s): See RETI

RETI�C/RETI�NC,�RETI�Z/RETI�NZ,�RETI�S� Conditional�Return�from�Interrupt�on�Status�Flag

Description: Performs conditional return (RETI) based upon the state of a specific processor status flag . RETI C
returns if the Carry flag is set while RETI NC returns if the Carry flag is clear . RETI Z returns if the
Zero flag is set while RETI NZ returns if the Zero flag is clear . RETI S returns if the Sign flag is set .
See RETI for additional information on the return operation .

Status�Flags:� None

RETI�C

Operation: C=1: IP ← @SP--

 INS ← 0

 C=0: IP ← IP + 1

Encoding: 15 0

1010 1100 1000 1101

Example(s):� RETI C ; C=1, return from interrupt (RETI) is performed

RETI�NC

Operation: C=0: IP ← @SP--

 INS ← 0

 C=1: IP ← IP +1

Encoding: 15 0

1110 1100 1000 1101

Example(s):� RETI NC ; C=1, return from interrupt (RETI) does not occur

� � Maxim�Integrated�� � 20-22

MAX31782 User’s Guide

Revision 0; 8/11

RETI�Z

Operation: Z=1: IP ← @SP--

 INS ← 0

 Z=0: IP ← IP + 1

Encoding: 15 0

1001 1100 1000 1101

Example(s):� RETI Z ; Z=0, return from interrupt (RETI) does not occur

RETI�NZ

Operation: Z=0: IP ← @SP--

 INS ← 0

 Z=1: IP ← IP +1

Encoding: 15 0

1101 1100 1000 1101

Example(s):� RETI NZ ; Z=0, return from interrupt (RETI) is performed

RETI�S

Operation: S=1: IP ← @SP--

 INS ← 0

 S=0: IP ← IP + 1

Encoding: 15 0

1100 1100 1000 1101

Example(s):� RETI S ; S=0, return from interrupt (RETI) does not occur

� Maxim�Integrated�� � 20-23

MAX31782 User’s Guide

Revision 0; 8/11

RL/RLC�� Rotate�Left�Accumulator�
Carry�Flag�(Ex/In)clusive

Description: Rotates the active accumulator left by a single bit position . The RL instruction circulates the msb
of the accumula- tor (bit 15) back to the lsb (bit 0) while the RLC instruction includes the Carry (C)
flag in the circular left shift .

Status�Flags:� C (for RLC only), S, Z (for RLC only)

RL�Operation: 15 Active Accumulator (Acc) 0

 Acc .[15:1] ← Acc .[14:0]; Acc .0 ← Acc .15

Encoding: 15 0

1000 1010 0100 1010

Example(s): ; Acc = A345h, S=1, Z=0

 RL ; Acc = 468Bh, S=0, Z=0

 RL ; Acc = 8D16h, S=1, Z=0

RLC�Operation: 15 Active Accumulator (Acc) 0 Carry Flag

 Acc .[15:1] ← Acc .[14:0]; Acc .0 ← C; C ← Acc .15

Encoding: 15 0

1000 1010 0101 1010

Example(s): ; Acc = A345h, C=1, S=1, Z=0

 RLC ; Acc = 468Bh, C=1, S=0, Z=0

 RLC ; Acc = 8D17h, C=0, S=1, Z=0

� Maxim�Integrated�� � 20-24

MAX31782 User’s Guide

Revision 0; 8/11

RR/RRC�� Rotate�Right�Accumulator�
Carry�Flag�(Ex/In)clusive

Description: Rotates the active accumulator right by a single bit position . The RR instruction circulates the lsb of
the accumula- tor (bit 0) back to the msb (bit 15) while the RRC instruction includes the Carry (C)
flag in the circular right shift .

Status�Flags:� C (for RRC only), S, Z (for RRC only)

RR�Operation: 15 Active Accumulator (Acc) 0

 Acc .[14:0] ← Acc .[15:1]; Acc .15 ← Acc .0

Encoding: 15 0

1000 1010 1100 1010

Example(s): ; Acc = A345h, S=1, Z=0

 RR ; Acc = D1A2h, S=1, Z=0

 RR ; Acc = 68D1h, S=0, Z=0

RRC�Operation: 15 Active Acc (Acc) 0 Carry Flag

 Acc .[14:0] ← Acc .[15:1]; Acc .15 ← C; C ← Acc .0

Encoding: 15 0

1000 1010 1101 1010

Example(s): ; Acc = A345h, C=1, S=1, Z=0

 RRC ; Acc = D1A2h, C=1, S=1, Z=0

 RRC ; Acc = E8D1h, C=0, S=1, Z=0

� Maxim�Integrated�� � 20-25

MAX31782 User’s Guide

Revision 0; 8/11

SLA/SLA2/SLA4�� Shift�Accumulator�Left�Arithmetically�
One,�Two,�or�Four�Times

Description: Shifts the active accumulator left once, twice, or four times respectively for SLA, SLA2, and SLA4 .
For each shift iter- ation, a 0 is shifted into the lsb, and the msb is shifted into the Carry (C) flag . For
signed data, this shifting process effectively retains the sign orientation of the data to the point at
which overflow/underflow would occur .

Status�Flags:� C, S, Z

SLA�Operation: Carry Flag 15 Active Accumulator (Acc) 0

0

 C ← Acc .15; Acc .[15:1] ← Acc .[14:0]; Acc .0 ← 0

Encoding: 15 0

1000 1010 0010 1010

Example(s): ; Acc = E345h, C=0, S=1, Z=0

 SLA ; Acc = C68h, C=1, S=1, Z=0

 SLA ; Acc = 8D14h, C=1, S=1, Z=0

SLA2�Operation: Carry Flag 15 Active Accumulator (Acc) 0

0

 C ← Acc .14; Acc .[15:2] ← Acc .[13:0]; Acc .[1:0] ← 0

Encoding: 15 0

1000 1010 0011 1010

Example(s): ; Acc = E345h, C=0, S=1, Z=0

 SLA2 ; Acc = 8D14h, C=1, S=1, Z=0

SLA4�Operation: Carry Flag 15 Active Accumulator (Acc) 0

0

 C ← Acc .12; Acc .[15:4] ← Acc .[11:0]; Acc .[3:0] ← 0

Encoding: 15 0

1000 1010 0110 1010

Example(s): ; Acc = E345h, C=0, S=1, Z=0

 SLA4 ; Acc = 3450h, C=0, S=0, Z=0

� �Maxim�Integrated�� � 20-26

MAX31782 User’s Guide

Revision 0; 8/11

SR/SRA/SRA2/SRA4� Shift�Accumulator�Right/Shift�Accumulator�Right�Arithmetically�
One,�Two,�or�Four�Times

Description: Shifts the active accumulator right once for the SR, SRA instructions and 2 or 4 times, respectively,
for the SRA2, SRA4 instructions . The SR instruction shifts a 0 into the accumulator msb while the
SRA, SRA2, and SRA4 instruc- tions effectively shift a copy of the current msb into the accumulator,
thereby preserving any sign orientation . For each shift iteration, the accumulator lsb is shifted into
the Carry (C) flag .

Status�Flags:� C, S (changes for SR only), Z

SR�Operation: 15 Active Accumulator (Acc) 0 Carry Flag

0

 Acc .15 ← 0; Acc .[14:0] ← Acc .[15:1]; C ← Acc .0

Encoding: 15 0

1000 1010 1010 1010

Example(s): ; Acc = A345h, C=1, S=1, Z=0

 SR ; Acc = 51A2h, C=1, S=0, Z=0

 SR ; Acc = 28D1h, C=0, S=0, Z=0

SRA�Operation: 15 Active Accumulator (Acc) 0 Carry Flag

 Acc .[14:0] ← Acc .[15:1]

 Acc .15 ← Acc .15

 C ← Acc .0

Encoding: 15 0

1000 1010 1111 1010

Example(s): ; Acc = 0003h, C=0, Z=0

 SRA ; Acc = 0001h, C=1, Z=0

 SRA ; Acc = 0000h, C=1, Z=1

� �Maxim�Integrated�� � 20-27

MAX31782 User’s Guide

Revision 0; 8/11

SRA2�Operation: 15 Active Accumulator (Acc) 0 Carry Flag

 Acc .[13:0] ← Acc .[15:2]

 Acc .[15:14] ← Acc .15

 C ← Acc .1

Encoding: 15 0

1000 1010 1110 1010

Example(s): ; Acc = 0003h, C=0, Z=0

 SRA2 ; Acc = 0000h, C=1, Z=1

SRA4�Operation: 15 Active Accumulator (Acc) 0 Carry Flag

 Acc .[11:0] ← Acc .[15:4]

 Acc .[15:12] ← Acc .15

 C ← Acc .3

Encoding: 15 0

1000 1010 1011 1010

Example(s): ; Acc = 9878h, C=0, Z=0

 SRA4 ; Acc = F987h, C=1, Z=0

 SRA4 ; Acc = FF98h, C=0, Z=0

� �Maxim�Integrated�� � 20-28

MAX31782 User’s Guide

Revision 0; 8/11

SUB/SUBB�src� Subtract�/Subtract�with�Borrow

Description: Subtracts the specified src from the active accumulator (Acc) and returns the result back to the
active accumula- tor . The SUBB additionally subtracts the borrow (Carry Flag), which may have
resulted from previous subtraction . For the complete list of src specifiers, reference the MOVE
instruction . Because the source is limited to 8 bits, the PFX[n] register is used to supply the high-
byte of data for 16 bit sources .

Status�Flags:� C, S, Z, OV

SUB�Operation: Acc ← Acc - src

Encoding: 15 0

f101 1010 ssss ssss

Example(s): ; Acc = 2345h to start, A[1]= 1250h

 SUB A[1] ; Acc = 10F5h, C=0, S=0, Z=0, OV=0

 SUB A[1] ; Acc = FEA5h, C=1, S=1, Z=0, OV=0

 SUB A[2] ; A[2] =7FFFh

 ; → Acc = 7EA6h; C=0, S=0, Z=0, OV=1

SUBB�Operation: Acc ← Acc - (src + C)

Encoding: 15 0

f111 1010 ssss ssss

Example(s): ; Acc = 2345h, A[1]= 1250h, C=1

 SUBB A[1] ; Acc = 10F4h, C=0, S=0, Z=0

 SUBB A[1] ; Acc = FEA4h, C=1, S=1, Z=0

Special�Notes: The active accumulator (Acc) is not allowed as the src for these operations .

� Maxim�Integrated�� � 20-29

MAX31782 User’s Guide

Revision 0; 8/11

XCH� Exchange�Accumulator�Bytes

Description: Exchanges the upper and lower bytes of the active accumulator .

Status�Flags: S

Operation: Acc .[15:8] ← Acc .[7:0]

 Acc .[7:0] ← Acc .[15:8]

Encoding: 15 0

1000 1010 1000 1010

Example(s): ; Acc = 2345h

 XCHN ; Acc = 4523h

XCHN� Exchange�Accumulator�Nibbles

Description: Exchanges the upper and lower nibbles in the active accumulator byte(s) .

Status�Flags: S

Operation: Acc .[7:4] ← Acc .[3:0]

 Acc .[3:0] ← Acc .[7:4]

 Acc .[15:12] ← Acc .[11:8]

 Acc .[11:8] ← Acc .[15:12]

Encoding: 15 0

1000 1010 0111 1010

Example(s): ; Acc = 2345h

 XCHN ; Acc = 3254h

� �Maxim�Integrated�� � 20-30

MAX31782 User’s Guide

Revision 0; 8/11

XOR�src� Logical�XOR

Description: Performs a logical-XOR between the active accumulator (Acc or A[AP]) and the specified src data .
For the complete list of src specifiers, reference the MOVE instruction . Because the source is lim-
ited to 8 bits, the PFX[n] register is used to supply the high-byte of data for 16 bit sources .

Status�Flags: S, Z

Operation: Acc ← Acc XOR src

Encoding: 15 0

f011 1010 ssss ssss

Example(s): ; Acc = 2345h

 XOR A[2] ; A[2]=0F0Fh; Acc ← 2C4Ah

Special�Notes: The active accumulator (Acc) is not allowed as the src for this operation .

XOR�Acc.� Logical�XOR�Carry�Flag�with�Accumulator�Bit

Description: Performs a logical-XOR between the Carry (C) status flag and a specified bit of the active accumu-
lator (Acc .) and returns the result to the Carry .

Status�Flags: C

Operation: C ← C XOR Acc .

Encoding: 15 0

1011 1010 bbbb 1010

Example(s): ; Acc = 2345h, C=1 at start

 XOR Acc .1 ; Acc .1=0 → C=1

 XOR Acc .2 ; Acc .2=1 → C=0

� Maxim�Integrated� 21-1

MAX31782 User’s Guide

Revision 0; 8/11

SECTION 21: UTILITY ROM

21 .1 Overview .21-2

21 .2 In-Application Programming Functions .21-3

21 .2 .1 UROM_flashWrite .21-3

21 .2 .2 UROM_flashErasePage .21-3

21 .2 .3 UROM_flashEraseAll .21-3

21 .3 Data Transfer Functions . .21-4

21 .3 .1 UROM_moveDP0 .21-5

21 .3 .2 UROM_moveDP0inc .21-5

21 .3 .3 UROM_moveDP0dec .21-5

21 .3 .4 UROM_moveDP1 .21-6

21 .3 .5 UROM_moveDP1inc .21-6

21 .3 .6 UROM_moveDP1dec .21-6

21 .3 .7 UROM_moveBP .21-7

21 .3 .8 UROM_moveBPinc .21-7

21 .3 .9 UROM_moveBPdec .21-7

21 .3 .10 UROM_copyBuffer .21-8

21 .3 .11 UROM_stopMode .21-8

21 .4 Utility ROM Examples .21-9

21 .4 .1 Reading Constant Word Data from Flash . .21-9

21 .4 .2 Reading Constant Byte Data from Flash (Indirect Function Call) .21-9

LIST OF TABLES

Table 21-1 . MAX31782 Utility ROM Functions . .21-2

LIST OF FIGURES

Figure 21-1 . Memory Map when Executing from Utility ROM .21-4

This section contains the following information:

� � Maxim�Integrated�� � 21-2

MAX31782 User’s Guide

Revision 0; 8/11

SECTION 21: UTILITY ROM

21.1�Overview
The MAX31782 utility ROM includes routines that provide the following functions to application software:

• In-application programming routines for flash memory (program, erase, mass erase)

• Single word/byte copy and buffer copy routines for lookup tables in flash

• Entry into stop mode

To provide backwards compatibility among different versions of the utility ROM, a function address table is included
that contains the entry points for all user-callable functions . With this table, user code can determine the entry point for
a given function as follows:

1) Read the location of the function address table from address 0800Dh in the utility ROM .

2) The entry points for each function listed below are contained in the function address table, one word per function,
in the order given by their function numbers .

For example, the entry point for the UROM_flashEraseAll function can be determined by the following procedure .

1) functionTable = romMemory[800Dh]

2) flashEraseAllEntry = romMemory[functionTable + 2]

It is also possible to call utility ROM functions directly, using the entry points given in Table 21-1 . Calling a function
directly will provide faster code execution .

Table�21-1.�MAX31782�Utility�ROM�Functions

INDEX FUNCTION�NAME
ENTRY�
POINT

SUMMARY

0 UROM_flashWrite 8449h Programs a single word of flash memory .

1 UROM_flashErasePage 846Ch Erases (programs to FFFFh) a 512-byte (256-word) sector of flash memory .

2 UROM_flashEraseAll 8482h Erases (programs to FFFFh) all flash memory .

3 UROM_moveDP0 8491h Reads a byte/word at DP[0] .

4 UROM_moveDP0inc 8494h Reads a byte/word at DP[0], then increments DP[0] .

5 UROM_moveDP0dec 8497h Reads a byte/word at DP[0], then decrements DP[0] .

6 UROM_moveDP1 849Ah Reads a byte/word at DP[1] .

7 UROM_moveDP1inc 849Dh Reads a byte/word at DP[1], then increments DP[0] .

8 UROM_moveDP1dec 84A0h Reads a byte/word at DP[1], then decrements DP[0] .

9 UROM_moveBP 84A3h Reads a byte/word at BP[OFFS] .

10 UROM_moveBPinc 84A6h Reads a byte/word at BP[OFFS], then increments OFFS .

11 UROM_moveBPdec 84A9h Reads a byte/word at BP[OFFS], then decrements OFFS .

12 UROM_copyBuffer 84ACh Copies LC[0] bytes/words (up to 255) from DP[0] to BP[OFFS] .

13 UROM_stopMode 84B2h Enters stop mode .

� � Maxim�Integrated�� � 21-3

MAX31782 User’s Guide

Revision 0; 8/11

21.2�In-Application�Programming�Functions

21.2.1�UROM�flashWrite

Notes:

• This function uses two stack levels to save and restore values .

• If the watchdog reset function is active, it should be disabled before calling this function .

• Interrupts are disabled while in this function .

• If the flash location has already been programmed to a non-FFFF value, this function returns with an error (Carry
set) . In order to reprogram a flash location, the location must first be erased by calling UROM_flashErasePage or
UROM_flash EraseAll .

21.2.2�UROM�flashErasePage

Notes:

• If the watchdog reset function is active, it should be disabled before calling this function .

• Interrupts are disabled while in this function .

• When calling this function from flash, care should be taken that the return address is not in the page which is being
erased .

21.2.3�UROM�flashEraseAll

Notes:

• If the watchdog reset function is active, it should be disabled before calling this function .

• Interrupts are disabled while in this function .

• This function can only be called by code running from the RAM . Attempting to call this function while running from
the flash results in an error .

Function UROM_flashWrite

Summary Programs a single word of flash memory

Inputs
A[0]: Word address in program flash memory to write .
A[1]: Value to write to flash memory .

Outputs Carry: Set on error and cleared on success

Destroys PSF, LC[1]

Function UROM_flashErasePage

Summary Erases (programs to FFFFh) a 512-byte page of flash memory .

Inputs A[0]: Word address located in the page to be erased . (The page number is the upper 8 bits of A[0] .)

Outputs Carry: Set on error and cleared on success .

Destroys PSF, LC[1], GR, AP, APC, A[0]

Function UROM_flashEraseAll

Summary Erases (programs to FFFFh) all locations in flash memory

Inputs None

Outputs Carry: Set on error and cleared on success .

Destroys PSF, GR, LC[1], LC[0], AP, APC, A[0]

�Maxim�Integrated�� � 21-4

MAX31782 User’s Guide

Revision 0; 8/11

21.3�Data�Transfer�Functions
The MAX31782 cannot access data from the same memory segment that is currently being used for instructions . For
example, when instructions are executing from FLASH, data in FLASH cannot be accessed . The following utility ROM
functions can be used to transfer data from one memory segment to another . For example, if data in FLASH needs to
be copied to SRAM, one of these ROM functions can be called to do this transfer . This is useful when code is executing
from FLASH and access to lookup tables or non-volatile data that is stored in FLASH is required . These functions can
also be used by code running from SRAM to read data that is stored in SRAM .

Since these functions are executed from utility ROM, addresses must be specified correctly to point to the intended
memory segments . When executing from utility ROM, the memory map is illustrated in Figure 21-1 . For example, data
located at word address 0100h in the FLASH must be accessed at word address 8100h (or byte address 8200h) when
using any of the functions listed in the following sections .

Figure 21-1. Memory Map when Executing from Utility ROM

PROGRAM
SPACE

DATA SPACE
(WORD MODE)

DATA SPACE
(BYTE MODE, CDA0 = 0)

DATA SPACE
(BYTE MODE, CDA0 = 1)

FFFFh FFFFh

8000h

FFFFh

8000h

FFFFh

8000h

03FFh

07FFh

0000h

07FFh

0000h 0000h

A3FFh

EX
EC

UT
IN

G
FR

OM

A000h

8FFFh

7FFFh

3FFFh

8000h

4000h

0000h

1K x 16
DATA SRAM

1K x 16
DATA SRAM

32K x 8
LOWER HALF
(PAGE 0) OF

PROGRAM FLASH

32K x 8
UPPER HALF
(PAGE 1) OF

PROGRAM FLASH

32K x 16
PROGRAM FLASH

4K x 16
UTILITY ROM

16K x 16
PROGRAM FLASH

(PAGE 1)

16K x 16
PROGRAM FLASH

(PAGE 0)

2K x 8
DATA SRAM

2K x 8
DATA SRAM

� � Maxim�Integrated�� � 21-5

MAX31782 User’s Guide

Revision 0; 8/11

21.3.1�UROM�moveDP0

Notes:

• Before calling this function, DPC should be set appropriately to configure DP[0] for byte or word mode .

• The address passed to this function should be based on the data memory mapping for the utility ROM, as shown
in Figure 21-1 . When a byte mode address is used, CDA0 must be set appropriately to access either the upper or
lower half of program flash memory .

• This function automatically selects DP[0] as the data pointer before reading the byte/word value .

• Implemented as: move GR, @DP[0]

21.3.2�UROM�moveDP0inc

Notes:

• Before calling this function, DPC should be set appropriately to configure DP[0] for byte or word mode .

• The address passed to this function should be based on the data memory mapping for the utility ROM, as shown
in Figure 21-1 . When a byte mode address is used, CDA0 must be set appropriately to access either the upper or
lower half of program flash memory .

• This function automatically selects DP[0] as the data pointer before reading the byte/word value .

• Implemented as: move GR, @DP[0]++

21.3.3�UROM�moveDP0dec

Notes:

• Before calling this function, DPC should be set appropriately to configure DP[0] for byte or word mode .

• The address passed to this function should be based on the data memory mapping for the utility ROM, as shown
in Figure 21-1 . When a byte mode address is used, CDA0 must be set appropriately to access either the upper or
lower half of program flash memory .

• This function automatically selects DP[0] as the data pointer before reading the byte/word value .

• Implemented as: move GR, @DP[0]--

Function UROM_moveDP0

Summary Reads the byte/word value pointed to by DP[0] .

Inputs DP[0]: Address to read from data space (include 8000h offset if reading from flash) .

Outputs GR: Data byte/word read .

Destroys None

Function UROM_moveDP0inc

Summary Reads the byte/word value pointed to by DP[0], then increments DP[0] .

Inputs DP[0]: Address to read from data space (include 8000h offset if reading from flash) .

Outputs
GR: Data byte/word read .
DP[0] is incremented .

Destroys None

Function UROM_moveDP0dec

Summary Reads the byte/word value pointed to by DP[0], then decrements DP[0] .

Inputs DP[0]: Address to read from data space (include 8000h offset if reading from flash) .

Outputs
GR: Data byte/word read .
DP[0] is decremented .

Destroys None

� �Maxim�Integrated�� � 21-6

MAX31782 User’s Guide

Revision 0; 8/11

21.3.4�UROM�moveDP1

Notes:

• Before calling this function, DPC should be set appropriately to configure DP[1] for byte or word mode .

• The address passed to this function should be based on the data memory mapping for the utility ROM, as shown
in Figure 21-1 . When a byte mode address is used, CDA0 must be set appropriately to access either the upper or
lower half of program flash memory .

• This function automatically selects DP[1] as the data pointer before reading the byte/word value .

• Implemented as: move GR, @DP[1]

21.3.5�UROM�moveDP1inc

Notes:

• Before calling this function, DPC should be set appropriately to configure DP[1] for byte or word mode .

• The address passed to this function should be based on the data memory mapping for the utility ROM, as shown
in Figure 21-1 . When a byte mode address is used, CDA0 must be set appropriately to access either the upper or
lower half of program flash memory .

• This function automatically selects DP[1] as the data pointer before reading the byte/word value .

• Implemented as: move GR, @DP[1]++

21.3.6�UROM�moveDP1dec

Notes:

• Before calling this function, DPC should be set appropriately to configure DP[1] for byte or word mode .

• The address passed to this function should be based on the data memory mapping for the utility ROM, as shown
in Figure 21-1 . When a byte mode address is used, CDA0 must be set appropriately to access either the upper or
lower half of program flash memory .

• This function automatically selects DP[1] as the data pointer before reading the byte/word value .

• Implemented as: move GR, @DP[1]--

Function UROM_moveDP1

Summary Reads the byte/word value pointed to by DP[1] .
Inputs DP[1]: Address to read from data space (include 8000h offset if reading from flash) .

Outputs GR: Data byte/word read .

Destroys None

Function UROM_moveDP1inc

Summary Reads the byte/word value pointed to by DP[1], then increments DP[1] .

Inputs DP[1]: Address to read from data space (include 8000h offset if reading from flash) .

Outputs
GR: Data byte/word read .
DP[1] is incremented .

Destroys None

Function UROM_moveDP1dec

Summary Reads the byte/word value pointed to by DP[1], then decrements DP[1] .

Inputs DP[1]: Address to read from data space (include 8000h offset if reading from flash) .

Outputs
GR: Data byte/word read .
DP[1] is decremented .

Destroys None

� � Maxim�Integrated�� � 21-7

MAX31782 User’s Guide

Revision 0; 8/11

21.3.7�UROM�moveBP

Notes:

• Before calling this function, DPC should be set appropriately to configure BP[OFFS] for byte or word mode .

• The address passed to this function should be based on the data memory mapping for the utility ROM, as shown
in Figure 21-1 . When a byte mode address is used, CDA0 must be set appropriately to access either the upper or
lower half of program flash memory .

• This function automatically selects BP[OFFS] as the data pointer before reading the byte/word value .

• Implemented as: move GR, @BP[OFFS]

21.3.8�UROM�moveBPinc

Notes:

• Before calling this function, DPC should be set appropriately to configure BP[OFFS] for byte or word mode .

• The address passed to this function should be based on the data memory mapping for the utility ROM, as shown
in Figure 21-1 . When a byte mode address is used, CDA0 must be set appropriately to access either the upper or
lower half of program flash memory .

• This function automatically selects BP[OFFS] as the data pointer before reading the byte/word value .

• Implemented as: move GR, @BP[OFFS++]

21.3.9�UROM�moveBPdec

Notes:

• Before calling this function, DPC should be set appropriately to configure BP[OFFS] for byte or word mode .

• The address passed to this function should be based on the data memory mapping for the utility ROM, as shown
in Figure 21-1 . When a byte mode address is used, CDA0 must be set appropriately to access either the upper or
lower half of program flash memory .

• This function automatically selects BP[OFFS] as the data pointer before reading the byte/word value .

• Implemented as: move GR, @BP[OFFS--]

Function UROM_moveBP

Summary Reads the byte/word value pointed to by BP[OFFS] .

Inputs BP[OFFS]: Address to read from data space (include 8000h offset if reading from flash) .

Outputs GR: Data byte/word read

Destroys None .

Function UROM_moveBPinc

Summary Reads the byte/word value pointed to by BP[OFFS], then increments OFFS .

Inputs BP[OFFS]: Address to read from data space (include 8000h offset if reading from flash) .

Outputs
GR: Data byte/word read .
OFFS is incremented .

Destroys None

Function UROM_moveBPdec

Summary Reads the byte/word value pointed to by BP[OFFS], then decrements OFFS .

Inputs BP[OFFS]: Address to read from data space (include 8000h offset if reading from flash) .

Outputs
GR: Data byte/word read .
OFFS is decremented .

Destroys None

� � Maxim�Integrated�� � 21-8

MAX31782 User’s Guide

Revision 0; 8/11

21.3.10�UROM�copyBuffer

Notes:

• This function can be used to copy from program flash to data RAM, or from one part of data RAM to another . It can-
not be used to copy data into flash memory; the UROM_writeFlash function should be used for this purpose .

• Before calling this function, DPC should be set appropriately to configure DP[0] and BP[OFFS] for byte or word
mode . Both DP[0] and BP[OFFS] should be configured to the same mode (byte or word) for correct buffer copying .

• The addresses passed to this function should be based on the data memory mapping for the utility ROM, as shown
in Figure 21-1 . When a byte mode address is used, CDA0 must be set appropriately to access either the upper or
lower half of program flash memory .

• This function automatically selects the data pointers before reading the byte/word values .

21.3.11�UROM�stopMode

Notes:

• Stop mode should normally be called from user code .

Function UROM_copyBuffer

Summary LC[0] bytes/words (up to 256) from DP[0] to BP[OFFS] .

Inputs
DP[0]: Starting address to copy from .
BP[OFFS]: Starting address to copy to .
LC[0]: Number of bytes/words to copy .

Outputs
OFFS is incremented by LC[0] .
DP[0] is incremented by LC[0] .

Destroys LC[0]

Function UROM_stopMode

Summary Enters stop mode .

Inputs None

Outputs None

Destroys None

� � Maxim�Integrated�� � 21-9

MAX31782 User’s Guide

Revision 0; 8/11

21.4�Utility�ROM�Examples

21.4.1�Reading�Constant�Word�Data�from�Flash
UROM_moveDP0inc	equ	08494h

move	DPC,	#1Ch	 	 	 ;	Set	all	pointers	to	word	mode

move	DP[0],	#(table	+	8000h)	 ;		Point	to	address	of	data	as	viewed	in	the	Utility	ROM	
memory	map

lcall	#UROM_moveDP0inc

move	A[0],	GR	 	 	 ;	A[0]	=	1111h

lcall	#UROM_moveDP0inc

move	A[1],	GR	 	 	 ;	A[1]	=	2222h

lcall	#UROM_moveDP0inc

move	A[2],	GR	 	 	 ;	A[0]	=	3333h

lcall	#UROM_moveDP0inc

move	A[3],	GR	 	 	 ;	A[1]	=	4444h

sjump	$

org	0100h

table:

	 dw	1111h,	2222h,	3333h,	4444h

21.4.2�Reading�Constant�Byte�Data�from�Flash�(Indirect�Function�Call)
INDX_moveDP0inc	equ	4

move	DPC,	#1Ch		 	 	 ;	Set	all	pointers	to	word	mode

move	DP[0],	#800Dh		 	 ;	Fetch	location	of	function	table	from	Utility	ROM

move	BP,	@DP[0]		 	 	 ;	Set	base	pointer	to	function	table	location

move	Offs,	#INDX_moveDP0inc		 ;	Set	offset	to	moveDP0inc	entry	in	table

move	A[7],	@BP[Offs]	 	 ;	Get	address	of	moveDP0inc	function

move	DPC,	#00h		 	 	 ;	Set	all	pointers	to	byte	mode

move	DP[0],	#((table	*	2)	+	8000h)	;		Point	to	address	of	data	as	viewed	in	the	Utility	ROM	memory	
map	and	convert	to	byte	mode	pointer

lcall	A[7]		 	 	 	 ;	moveDP0inc

move	A[0],	GR		 	 	 ;	A[0]	=	34h

lcall	A[7]		 	 	 	 ;	moveDP0inc

move	A[1],	GR		 	 	 ;	A[1]	=	12h

lcall	A[7]		 	 	 	 ;	moveDP0inc

move	A[2],	GR		 	 	 ;	A[2]	=	78h

lcall	A[7]		 	 	 	 ;	moveDP0inc

move	A[3],	GR		 	 	 ;	A[3]	=	56h

sjump	$

org	0100h

table:

	 dw	1234h,	5678h

MAX31782 User’s Guide

Revision 0; 8/11

REVISION HISTORY

REVISION
NUMBER

REVISION
DATE

DESCRIPTION
PAGES

CHANGED

0 8/11 Initial release —

223Maxim Integrated 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-1000

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied.
Maxim reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical
Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

© 2011 Maxim Integrated The Maxim logo and Maxim Integrated are trademarks of Maxim Integrated Products, Inc.

	TABLE OF CONTENTS
	SECTION 1: Overview
	SECTION 2: Architecture
	2.1 Instruction Decoding
	2.2 Register Space
	2.3 Memory Types
	2.3.1 Flash Memory
	2.3.2 SRAM Memory
	2.3.3 Utility ROM
	2.3.4 Stack Memory

	2.4 Program and Data Memory Mapping and Access
	2.4.1 Program Memory Access
	2.4.2 Program Memory Mapping
	2.4.3 Data Memory Access
	2.4.3.1 Data Pointers
	2.4.3.2 Frame Pointer

	2.4.4 Data Memory Mapping
	2.4.4.1 Memory Map When Executing from Flash Memory
	2.4.4.2 Memory Map When Executing from Utility ROM
	2.4.4.3 Memory Map When Executing from SRAM

	2.5 Data Alignment
	2.6 Reset Conditions
	2.6.1 Power-On/Brownout Reset
	2.6.2 Watchdog Timer Reset
	2.6.3 External Reset
	2.6.4 Internal System Resets

	2.7 Clock Generation
	2.8 Power Modes

	SECTION 3: System Register Descriptions
	3.1 System Register Bit Descriptions
	3.1.1 Accumulator Pointer Register (AP, 8h[0h])
	3.1.2 Accumulator Pointer Control Register (APC, 8h[1h])
	3.1.3 Processor Status Flags Register (PSF, 8h[4h])
	3.1.4 Interrupt and Control Register (IC, 8h[5h])
	3.1.5 Interrupt Mask Register (IMR, 8h[6h])
	3.1.6 System Control Register (SC, 8h[8h])
	3.1.7 Interrupt Identification Register (IIR, 8h[Bh])
	3.1.8 System Clock Control Register (CKCN, 8h[Eh])
	3.1.9 Watchdog Control Register (WDCN, 8h[Fh])
	3.1.10 Accumulator n Register (A[n], 9h[nh])
	3.1.11 Prefix Register (PFX[n], Bh[n])
	3.1.12 Instruction Pointer Register (IP, Ch[0h])
	3.1.13 Stack Pointer Register (SP, Dh[1h])
	3.1.14 Interrupt Vector Register (IV, Dh[2h])
	3.1.15 Loop Counter 0 Register (LC[0], Dh[6h])
	3.1.16 Loop Counter 1 Register (LC[1], Dh[7h])
	3.1.17 Frame Pointer Offset Register (OFFS, Eh[3h])
	3.1.18 Data Pointer Control Register (DPC, Eh[4h])
	3.1.19 General Register (GR, Eh[5h])
	3.1.20 General Register Low Byte (GRL, Eh[6h])
	3.1.21 Frame Pointer Base Register (BP, Eh[7h])
	3.1.22 General Register Byte-Swapped (GRS, Eh[8h])
	3.1.23 General Register High Byte (GRH, Eh[9h])
	3.1.24 General Register Sign Extended Low Byte (GRXL, Eh[Ah])
	3.1.25 Frame Pointer Register (FP, Eh[Bh])
	3.1.26 Data Pointer 0 Register (DP[0], Fh[3h])
	3.1.27 Data Pointer 1 Register (DP[1], Fh[7h])

	SECTION 4: Peripheral Register Modules
	SECTION 5: Interrupts
	5.1 Servicing Interrupts
	5.2 Module Interrupt Identification Registers
	5.2.1 Peripheral Module 0 Interrupt Identification Register (MIIR0, M0[03h])
	5.2.2 Peripheral Module 1 Interrupt Identification Register (MIIR1, M1[04h])
	5.2.3 Peripheral Module 2 Interrupt Identification Register (MIIR2, M2[03h])
	5.2.4 Peripheral Module 3 Interrupt Identification Register (MIIR3, M3[10h])
	5.2.5 Peripheral Module 4 Interrupt Identification Register (MIIR4, M4[10h])
	5.2.6 Peripheral Module 5 Interrupt Identification Register (MIIR5, M5[18h])

	5.3 Interrupt System Operation
	5.3.1 Synchronous vs. Asynchronous Interrupt Sources
	5.3.2 Interrupt Prioritization by Software
	5.3.3 Interrupt Exception Window

	SECTION 6: Analog-to-Digital Converter (ADC)
	6.1 Detailed Description
	6.1.1 Conversion Modes
	6.1.2 Conversion Sequencing
	6.1.3 ADC Conversion Time
	6.1.4 ADC Data Reading
	6.1.5 ADC Interrupts
	6.1.6 Using an External Reference
	6.1.7 Stop Mode Operation

	6.2 ADC Register Descriptions
	6.2.1 ADC Control Register (ADCN)
	6.2.2 ADC Status Register (ADST)
	6.2.3 ADC Address Register (ADADDR)
	6.2.4 ADC Data and Configuration Register (ADDATA)
	6.2.4.1 ADC Configuration Register (ADDATA when ADCFG = 1)
	6.2.4.2 ADC Data Buffer (ADDATA when ADCFG = 0)

	6.2.5 External Temperature Slope Control Register (ETS)
	6.2.6 ADC External Temperature Offset Register (TOEX)
	6.2.7 ADC Voltage Offset Register (ADVOFF)
	6.2.8 ADC Voltage Scale Trim Registers (ADCG1 and ADCG5)

	6.3 ADC Code Examples
	6.3.1 One Sequence of Four Temperature and Voltage Conversions
	6.3.2 Continuous Conversion of 16 Samples

	SECTION 7: I2C-Compatible Slave Interface
	7.1 Detailed Description
	7.1.1 Default Operation
	7.1.2 Slave Address
	7.1.3 I2C START Detection
	7.1.4 I2C STOP Detection
	7.1.5 Slave Address Matching
	7.1.6 Transmitting Data
	7.1.7 Receiving Data
	7.1.8 Clock Stretching
	7.1.9 SMBus Timeout
	7.1.10 Resetting the I2C Slave Controller
	7.1.11 Operation as a Master
	7.1.12 GPIO

	7.2 I2C Slave Controller Register Descriptions
	7.2.1 I2C Slave Control Register (I2CCN_S)
	7.2.2 I2C Slave Status Register (I2CST_S)
	7.2.3 I2C Slave Interrupt Enable Register (I2CIE_S)
	7.2.4 I2C Slave Address Register (I2CSLA_S)
	7.2.5 I2C Slave Data Buffer Register (I2CBUF_S)
	7.2.6 SMBus Mode Selection Register (SMBUS)
	7.2.7 I2C Slave Clock Control Register (I2CCK_S)
	7.2.8 I2C Slave Timeout Register (I2CTO_S)

	SECTION 8: I2C-Compatible Master Interface
	8.1 Detailed Description
	8.1.1 Description of Master I2C Interface
	8.1.2 Default Operation
	8.1.3 I2C Clock Generation
	8.1.4 Timeout
	8.1.5 Generating a START
	8.1.6 Generating a STOP
	8.1.7 Transmitting a Slave Address
	8.1.8 Transmitting Data
	8.1.9 Receiving Data
	8.1.10 I2C Master Clock Stretching
	8.1.11 Resetting the I2C Master Controller
	8.1.12 Operation as a Slave
	8.1.13 GPIO

	8.2 I2C Master Controller Register Descriptions
	8.2.1 I2C Master Control Register (I2CCN_M)
	8.2.2 I2C Master Status Register (I2CST_M)
	8.2.3 I2C Master Interrupt Enable Register (I2CIE_M)
	8.2.4 I2C Master Data Buffer Register (I2CBUF_M)
	8.2.5 I2C Master Clock Control Register (I2CCK_M)
	8.2.6 I2C Master Timeout Register (I2CTO_M)
	8.2.7 I2C Master Address Register (I2CSLA_M)
	8.2.8 SMBus Mode Selection Register (SMBUS)

	SECTION 9: PWM Outputs
	9.1 Detailed Description
	9.1.1 PWM Pin Mapping and GPIO Muliplexing
	9.1.2 PWM Operation
	9.1.3 Normal PWM Output Operation
	9.1.4 Up/Down Count PWM Output Operation

	9.2 PWM Output Register Descriptions
	9.2.1 PWM Control Register (PWMCNn)
	9.2.2 PWM Value Register (PWMVn)
	9.2.3 PWM Reload Register (PWMRn)
	9.2.4 PWM Compare Register (PWMCn)
	9.2.5 PWM Register Locations

	9.3 PWM Output Code Example

	SECTION 10: Fan Tachometer
	10.1 Fan Tachometer Detailed Description
	10.2 Timer/Fan Tachometer Register Descriptions
	10.2.1 Tachometer Control Register (TACHCNn)
	10.2.2 Tachometer Value Register (TACHVn)
	10.2.3 Tachometer Capture Register (TACHRn)
	10.2.3 Tachometer Register Locations

	10.3 Tachometer Pin and GPIO Multiplexing
	10.4 Tachometer Code Example

	SECTION 11: General-Purpose Input/Output (GPIO) Pins
	11.1 GPIO Port 1 Register Descriptions
	11.1.1 GPIO Direction Register Port 1 (PD1)
	11.1.2 GPIO Output Register Port 1 (PO1)
	11.1.3 GPIO Input Register for Port 1 (PI1)

	11.2 GPIO Port 2 Register Descriptions
	11.2.1 GPIO Direction Register Port 2 (PD2)
	11.2.2 GPIO Output Register Port 2 (PO2)
	11.2.3 GPIO Input Register for Port 2 (PI2)

	11.3 GPIO Port 6 Register Descriptions
	11.3.1 GPIO Direction Register Port 6 (PD6)
	11.3.2 GPIO Output Register Port 6 (PO6)
	11.3.3 GPIO Input Register for Port 6 (PI6)
	11.3.4 GPIO Port 6 External Interrupt Edge Select Register (EIES6)
	11.3.5 GPIO Port 6 External Interrupt Flag Register (EIF6)
	11.3.6 GPIO Port 6 External Interrupt Enable Register (EIE6)

	11.4 GPIO Code Example

	SECTION 12: Timer B Module
	12.1 Detailed Description
	12.1.1 Auto-Reload Mode
	12.1.2 Up/Down Count with Auto-Reload
	12.1.3 Capture Mode
	12.1.4 Clock Output Mode
	12.1.5 PWM Output Mode
	12.1.5.1 Up Count PWM Output Mode
	12.1.5.2 Up/Down Count PWM Output Mode

	12.2 Timer B Register Descriptions
	12.2.1 Timer B Control Register (TB0CN)
	12.2.2 Timer B Value Register (TB0V)
	12.2.3 Timer B Capture/Reload Register (TB0R)
	12.2.4 Timer B Compare Register (TB0C)

	12.3 Timer B Code Examples
	12.3.1 Auto-Reload Mode
	12.3.2 Clock Output Mode
	12.3.3 PWM Output Mode

	SECTION 13: Supply Voltage Monitor
	13.1 Supply Voltage Monitor Register (SVM) Descriptions

	SECTION 14: Hardware Multiplier
	14.1 Hardware Multiplier Organization
	14.2 Hardware Multiplier Controls
	14.3 Register Output Selection
	14.3.1 Signed-Unsigned Operand Selection
	14.3.2 Operand Count Selection

	14.4 Hardware Multiplier Operations
	14.4.1 Accessing the Multiplier

	14.5 Hardware Multiplier Peripheral Registers
	14.5.1 Multiplier Control Register (MCNT)
	14.5.2 Multiplier Operand A Register (MA)
	14.5.3 Multiplier Operand B Register (MB)
	14.5.4 Multiplier Accumulator 2 Register (MC2)
	14.5.5 Multiplier Accumulator 1 Register (MC1)
	14.5.6 Multiplier Accumulator 0 Register (MC0)
	14.5.7 Multiplier Read Register 1 (MC1R)
	14.5.8 Multiplier Read Register 0 (MC0R)

	14.6 Hardware Multiplier Examples

	SECTION 15: Watchdog Timer
	15.1 Watchdog Timer Description
	15.1.2 Watchdog Timer Interrupt Operation
	15.1.2 Watchdog Timer Reset Operation
	15.1.3 Watchdog Timer Applications
	15.2.4 Watchdog Timer Control Register (WDCN)

	SECTION 16: Test Access Port (TAP)
	16.1 TAP Controller
	16.2 TAP State Control
	16.2.1 Test-Logic-Reset
	16.2.2 Run-Test-Idle
	16.2.3 IR-Scan Sequence
	16.2.4 DR-Scan Sequence

	16.3 Communication via TAP
	16.3.1 TAP Communication Examples—IR-Scan and DR-Scan

	SECTION 17: In-Circuit Debug Mode
	17.1 Background Mode Operation
	17.1.1 Breakpoint Registers
	17.1.1.1 Breakpoint 0 Register (BP0)
	17.1.1.2 Breakpoint 1 Register (BP1)
	17.1.1.3 Breakpoint 2 Register (BP2)
	17.1.1.4 Breakpoint 3 Register (BP3)
	17.1.1.5 Breakpoint 4 Register (BP4)
	17.1.1.6 Breakpoint 5 Register (BP5)

	17.1.2 Using Breakpoints

	17.2 Debug Mode
	17.2.1 Debug Mode Commands
	17.2.2 Read Register Map Command Host-ROM Interaction
	17.2.3 Single Step Operation (Trace)
	17.2.4 Return
	17.2.5 Debug Mode Special Considerations

	17.3 In-Circuit Debug Peripheral Registers
	17.3.1 In-Circuit Debug Temp 0 Register (ICDT0, M2[18h])
	17.3.2 In-Circuit Debug Temp 1 Register (ICDT1, M2[19h])
	17.3.3 In-Circuit Debug Control Register (ICDC, M2[1Ah])
	17.3.4 In-Circuit Debug Flag Register (ICDF, M2[1Bh])
	17.3.5 In-Circuit Debug Buffer Register (ICDB, M2[1Ch])
	17.3.6 In-Circuit Debug Address Register (ICDA, M2[1Dh])
	17.3.7 In-Circuit Debug Data Register (ICDD, M2[1Eh])

	SECTION 18: In-System Programming
	18.1 Detailed Description
	18.1.1 Password Protection
	18.1.2 Entering JTAG Bootloader
	18.1.3 Entering I2C Bootloader
	18.1.4 I2C System Programming Buffer Register (I2C_SPB)

	18.2 Bootloader Operation
	18.2.1 JTAG Bootloader Protocol
	18.2.2 I2C Bootloader Protocol

	18.3 Bootloader Commands
	18.3.1 Command 00h—No Operation
	18.3.2 Command 01h—Exit Loader
	18.3.3 Command 02h—Master Erase
	18.3.4 Command 03h—Password Match
	18.3.5 Command 04h—Get Status
	18.3.6 Command 05h—Get Supported Commands
	18.3.7 Command 06h—Get Code Size
	18.3.8 Command 07h—Get Data Size
	18.3.9 Command 08h—Get Loader Version
	18.3.10 Command 09h—Get Utility ROM Version
	18.3.11 Command 0Eh—Get Device Number
	18.3.12 Command 10h—Load Code
	18.3.13 Command 11h—Load Data
	18.3.14 Command 20h—Dump Code
	18.3.15 Command 21h—Dump Data
	18.3.16 Command 30h—CRC Code
	18.3.17 Command 31h—CRC Data
	18.3.18 Command 40h—Verify Code
	18.3.19 Command 41h—Verify Data
	18.3.20 Command 50h—Load and Verify Code
	18.3.21 Command 51h—Load and Verify Data
	18.3.22 Command E0h—Code Page Erase

	SECTION 19: Programming
	19.1 Addressing Modes
	19.2 Prefixing Operations
	19.3 Reading and Writing Registers
	19.3.1 Loading an 8-Bit Register with an Immediate Value
	19.3.2 Loading a 16-Bit Register with a 16-Bit Immediate Value
	19.3.3 Moving Values Between Registers of the Same Size
	19.3.4 Moving Values Between Registers of Different Sizes

	19.4 Reading and Writing Register Bits
	19.5 Using the Arithmetic and Logic Unit
	19.5.1 Selecting the Active Accumulator
	19.5.2 Enabling Auto-Increment and Auto-Decrement
	19.5.3 ALU Operations Using the Active Accumulator and a Source
	19.5.4 ALU Operations Using Only the Active Accumulator
	19.5.5 ALU Bit Operations Using Only the Active Accumulator
	19.5.6 Example: Adding Two 4-Byte Numbers Using Auto-Increment

	9.6 Processor Status Flag Operations
	19.6.1 Sign Flag
	19.6.2 Zero Flag
	19.6.3 Equals Flag
	19.6.4 Carry Flag
	19.6.5 Overflow Flag

	19.7 Controlling Program Flow
	19.7.1 Obtaining the Next Execution Address
	19.7.2 Unconditional Jumps
	19.7.3 Conditional Jumps
	19.7.4 Calling Subroutines
	19.7.5 Looping Operations
	19.7.6 Conditional Returns

	19.8 Handling Interrupts
	19.8.1 Conditional Return from Interrupt

	19.9 Accessing the Stack
	19.10 Accessing Data Memory

	SECTION 20: Instruction Set Summary
	SECTION 21: Utility ROM
	21.1 Overview
	21.2 In-Application Programming Functions
	21.2.1 UROM_flashWrite
	21.2.2 UROM_flashErasePage
	21.2.3 UROM_flashEraseAll

	21.3 Data Transfer Functions
	21.3.1 UROM_moveDP0
	21.3.2 UROM_moveDP0inc
	21.3.3 UROM_moveDP0dec
	21.3.4 UROM_moveDP1
	21.3.5 UROM_moveDP1inc
	21.3.6 UROM_moveDP1dec
	21.3.7 UROM_moveBP
	21.3.8 UROM_moveBPinc
	21.3.9 UROM_moveBPdec
	21.3.10 UROM_copyBuffer
	21.3.11 UROM_stopMode

	21.4 Utility ROM Examples
	21.4.1 Reading Constant Word Data from Flash
	21.4.2 Reading Constant Byte Data from Flash (Indirect Function Call)

	REVISION HISTORY

