Features:

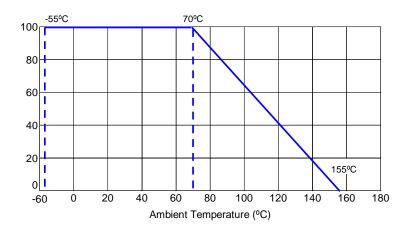
- Thin film technology for precision and stability
- Excellent power to size ratio
- Outstanding pulse handling
- Excellent overall stability
- Sn termination on Ni barrier layer
- Tight tolerance down to ±0.1%
- Extremely low TCR down to ±15ppm/°C
- High power rating up to 1 Watt
- SMD enabled structure
- AEC-Q200 qualified
- RoHS compliant, lead-free and halogen-free

	Electrical Specifications								
Type/Code	Package Size	Power Rating (Watts)	Maximum Working	Maximum Overload	Resistance Temperature	Ohmic Range (Ω) and Tolerance			
	Size	@ 70°C	Voltage ⁽¹⁾	Voltage ⁽²⁾	Coefficient	0.1%	0.5%	1%	5%
		0.3/4/			±50 ppm/°C	-	- 8.2 -		
MLFA13 ⁽³⁾	0102	0.3W	200V	200V 400V	±100 ppm/°C	-	<u>-</u>		1M
		Jumper: 2A			-	0Ω (<15mΩ)			
	0204	0.4W Jumper: 2A	200V 400V		±15 ppm/°C	10 - 300K			
				400V	±25 ppm/°C	10 - 1M			
MLFA25					±50 ppm/°C	10 - 1M	1 - 1M	0.2 -	1M
					±100 ppm/°C	· =		0.1 - 1M	
					-	0Ω (<15mΩ)			
	0207	1W 35			±15 ppm/°C	10 - 300K			
					±25 ppm/°C	10 - 1M		1M	
MLFA1			350V	700V	±50 ppm/°C	10 - 1M	1 - 1M	0.2 -	1M
				±100 ppm/°C	-		0.1 -	1M	
		Jumper: 4A	· 		=	0Ω (<15mΩ)			

Working Voltage = $\sqrt{(P^*R)}$ or Max. Operating Voltage listed above, whichever is lower.

RCWV (Rated Continuous Working Voltage) = $\sqrt{(P^*R)}$ or Max Operating Voltage, whichever is lower.

	Mechanical Specifications						
		K L					
Type / Code	Weight (1000 pc) (g)	L Rody Length	D Rody Diameter	K	Unit		

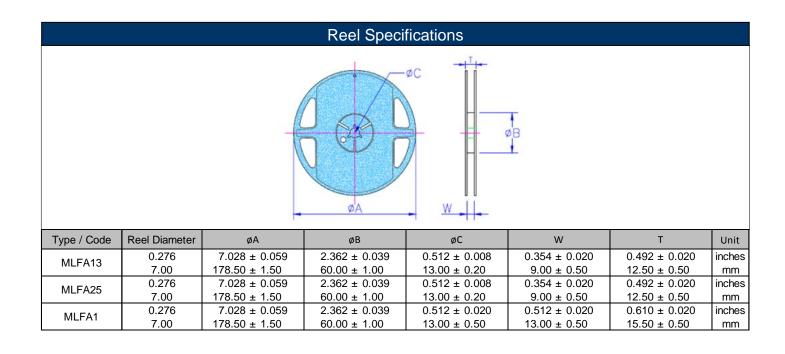

Type / Code	Weight (1000 pc) (g)	Weight (1000 pc) (g) L Body Length		K Termination	Unit
MLFA13	7.7	0.087 ± 0.004 2.20 ± 0.10	0.043 ± 0.004 1.10 ± 0.10	0.018 ± 0.002 0.45 ± 0.05	inches mm
MLFA25	18.7	0.138 ± 0.008 3.50 ± 0.20	0.055 ± 0.006 1.40 ± 0.15	0.031 ± 0.004 0.80 ± 0.10	inches mm
MLFA1	80.9	0.232 ± 0.008 5.90 ± 0.20	0.087 ± 0.008 2.20 ± 0.20	0.051 ± 0.004 1.30 ± 0.10	inches mm

Operating Temperature Range: -55 ~ +155°C

⁽²⁾ Overload Voltage = 2.5*√(P*R) or Max. Overload Voltage listed above, whichever is lower.

⁽³⁾ Lower TCR with lower Power Ratings may be available - contact factory

Power Derating Curve:



Performance Characteristics					
Test	Test Method	Test Specification			
Temperature Coefficient of Resistance (T.C.R.)	JIS-C-5201-1 4.8 IEC-60115-1 4.8 -55°C ~ +125°C, 25°C is the reference temperature	As specified			
Short Time Overload	JIS-C-5201-1 4.13 IEC-60115-1 4.13 RCWV*2.5 or max. overload voltage whichever is lower for 5 seconds	10Ω-270KΩ:±(0.1%+0.05Ω) <10Ω&>270KΩ:±(0.15%+0.05Ω) MLFA13: ±(0.15%+0.05Ω)			
Insulation Resistance	JIS-C-5201-1 4.6 IEC-60115-1 4.6 Max. overload voltage for 1 minute	≥10G			
Endurance	JIS-C-5201-1 4.25 IEC-60115-1 4.25.1 70±2°C, RCWV for 1000 hours with 1.5 hour "ON" and 0.5 hour "OFF"	10Ω-270KΩ:±(0.25%+0.05Ω) <10Ω&>270KΩ:±(0.5%+0.05Ω) MLFA13: ±(0.5%+0.05Ω)			
Biased Humidity	MIL-STD-202 Method 103 1000 hours 85°C/85% RH 10% of operating power	10Ω-270KΩ:±(0.5%+0.05Ω) <10Ω&>270KΩ:±(1%+0.05Ω) MLFA13: ±(2%+0.05Ω)			
High Temperature Exposure	MIL-STD-202 Method 108 at +155°C for 1000 hours	10Ω-270ΚΩ:±(0.25%+0.05Ω) <10Ω&>270ΚΩ:±(0.5%+0.05Ω) MLFA13: ±(1%+0.05Ω)			
Board Flex	AEC-Q200-005 Bending once for 60 seconds with 2mm	10Ω-270ΚΩ:±(0.1%+0.05Ω) <10Ω&>270ΚΩ:±(0.5%+0.05Ω) MLFA13: ±(0.5%+0.05Ω)			
Solderability	JIS-C-5201-1 4.17 IEC-60115-1 4.17 J-STD-002 245±5°C for 3 seconds	95% min. coverage			
Resistance to Soldering Heat	MIL-STD-202 Method 210 260±5°C for 10 seconds	10Ω-270KΩ:±(0.1%+0.05Ω) <10Ω&>270KΩ:±(0.25%+0.05Ω) MLFA13: ±(0.25%+0.05Ω)			
Voltage Proof	JIS-C-5201-1 4.7 IEC-60115-1 4.7 1.42 times max. operating voltage for 1 minute	No breakdown or flashover			

Performance Characteristics (cont.)						
Test	Test Method					
Leaching	JIS-C-5201-1 4.18 IEC-60068-2-58 8.2.1	Individual leaching area ≤5%				
	260±5°C for 30 seconds	Total leaching area ≤10%				
Temperature Cycling	JESD22 Method JA-104 -55°C to +125°C, 1000 cycles	10Ω-270KΩ: \pm (0.25%+0.05Ω) <10Ω&>270KΩ: \pm (0.5%+0.05Ω) MLFA13: \pm (1%+0.05Ω)				
Mechanical Shock	MIL-STD-202 Method 213 Wave Form: Tolerance for half sine shock pulse. Peak value is 100g's. Normal duration (D) is 6.	±(0.25%+0.05Ω)				
Vibration	MIL-STD-202 Method 204 5 g's for 20 minutes., 12 cycles each of 3 orientations, 10-2000 Hz	±(0.5%+0.05Ω)				
ESD	AEC-Q200-002 Human body, 2KV	$\pm (0.5\% + 0.05\Omega)$				
Resistance to Solvents	MIL-STD-202 Method 215 Add aqueous wash chemical - OKEM clean or equivalent. Do not use banned solvents.	No visible damage on appearance and marking.				
Terminal Strength	AEC-Q200-006 Force of 1.8 Kg for 60 seconds	No breakage				
Flammability	UL-94 V-0 or V-1 are acceptable. Electrical test not required.	No ignition of the tissue paper or scorching of the pinewood board				

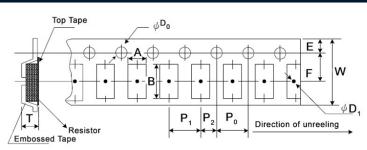
RCWV (rated continuous working voltage) = $v(P^*R)$ or max. operating voltage whichever is lower.

Storage temperature: 15~28 °C. Humidity < 80% R.H.

Unit

inches

mm

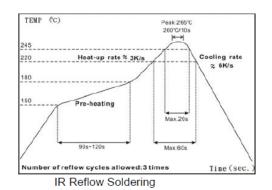

inches

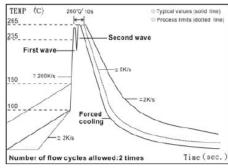
mm

inches

mm

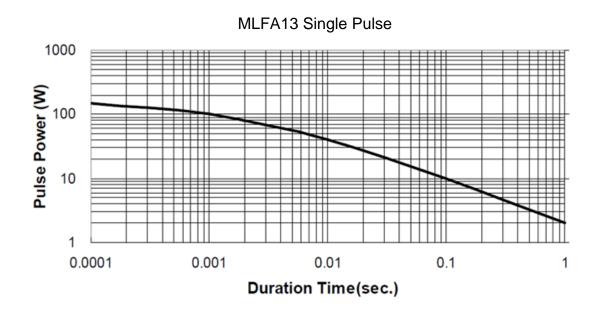
Packaging Specifications - Embossed Plastic Tape


Type / Code	A	В	W	E	F	P0
MLFA13	0.051 ± 0.004	0.094 ± 0.004	0.315 ± 0.004	0.069 ± 0.004	0.138 ± 0.002	0.157 ± 0.004
WEIAIS	1.30 ± 0.10	2.40 ± 0.10	8.00 ± 0.10	1.75 ± 0.10	3.50 ± 0.05	4.00 ± 0.10
MLFA25	0.061 ± 0.004	0.144 ± 0.004	0.315 ± 0.004	0.069 ± 0.004	0.138 ± 0.002	0.157 ± 0.004
IVILFAZO	1.55 ± 0.10	3.65 ± 0.10	8.00 ± 0.10	1.75 ± 0.10	3.50 ± 0.05	4.00 ± 0.10
MLFA1	0.094 ± 0.004	0.242 ± 0.004	0.472 ± 0.004	0.069 ± 0.004	0.217 ± 0.002	0.157 ± 0.004
IVILFAI	2.40 ± 0.10	6.15 ± 0.10	12.00 ± 0.10	1.75 ± 0.10	5.50 ± 0.05	4.00 ± 0.10
Type / Code	P1	P2	D0	D1	Т	Unit
MLFA13	0.157 ± 0.004	0.079 ± 0.002	0.059 ± 0.004	0.035 min.	0.059 ± 0.004	inches
IVILLATO	4.00 ± 0.10	2.00 ± 0.05	1.50 ± 0.10	0.90 min.	1.50 ± 0.10	mm
MLFA25	0.157 ± 0.004	0.079 ± 0.002	0.059 ± 0.004	0.035 min.	0.071 ± 0.004	inches
	4.00 ± 0.10	2.00 ± 0.05	1.50 ± 0.10	0.90 min.	1.80 ± 0.10	mm
MLFA1	0.157 ± 0.004	0.079 ± 0.002	0.059 ± 0.004	0.055 min.	0.106 ± 0.004	inches
	4.00 ± 0.10	2.00 ± 0.05	1.50 ± 0.10	1.40 min.	2.70 ± 0.10	mm

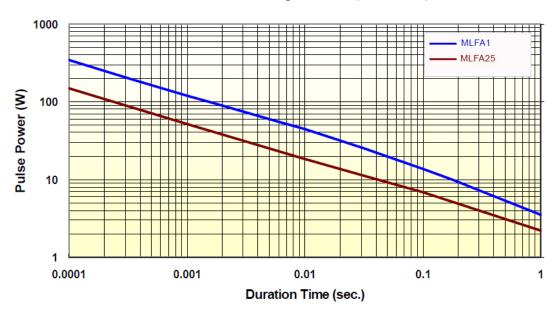

Recommended Pad Layout

Type / Code	A	В	С	Unit
MLFA13	0.039	0.031	0.059	inches
WLFA13	1.00	0.80	1.50	mm
MLFA25	0.063	0.047	0.063	inches
WILFA25	1.60	1.20	1.60	mm
MLFA1	0.118	0.067	0.094	inches
WILFAT	3.00	1.70	2.40	mm

Soldering Condition:

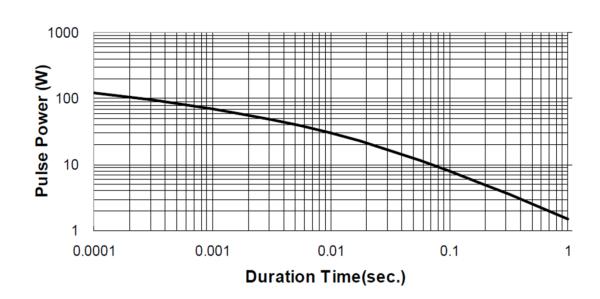


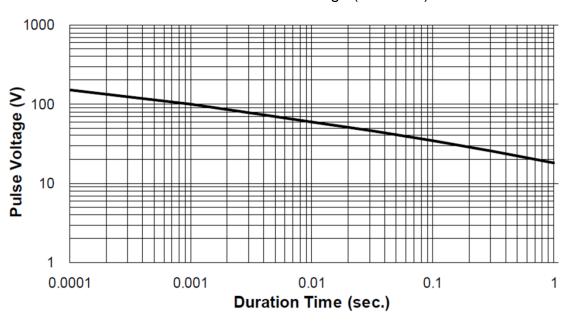
Wave Soldering (Flow Soldering)


- (1) Time of IR reflow soldering at maximum temperature point 260°C: 10s
- (2) Time of wave soldering at maximum temperature point 260°C: 10s
- (3) Time of soldering iron at maximum temperature point 410°C: 5s

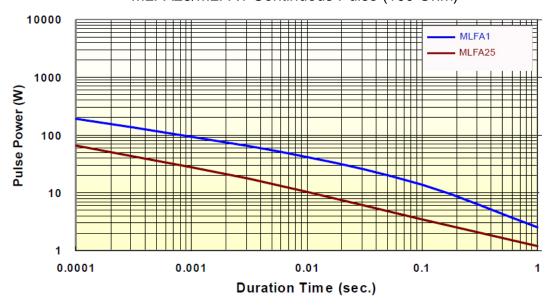
Pulse Withstanding Capacity

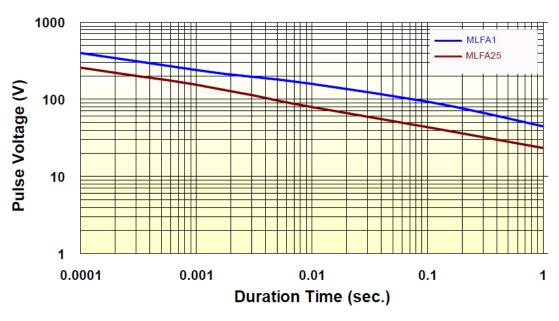
The single impulse graph is the result of 50 impulses of rectangular shape applied at one-minute intervals. The limit of acceptance was a shift in resistance of less than 1% from the initial value. The power applied was subject to the restrictions of the maximum permissible impulse voltage graph shown.


MLFA25/MLFA1 Single Pulse (100 Ohm)


Continuous Pulse

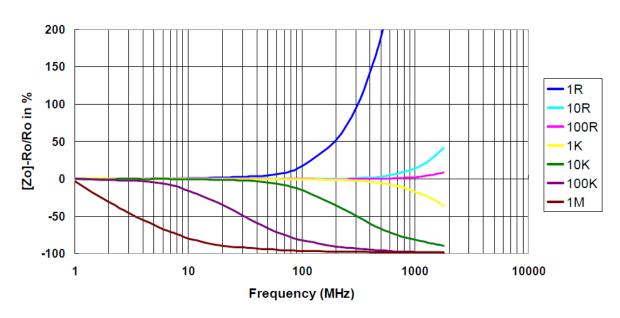
The continuous load graph was obtained by applying repetitive rectangular pulses where the pulse period was adjusted so that the average power dissipated in the resistor was equal to its rated power at 70°C. Again the limit of acceptance was a shift in resistance of less than 1% from the initial value.


MLFA13 Continuous Pulse

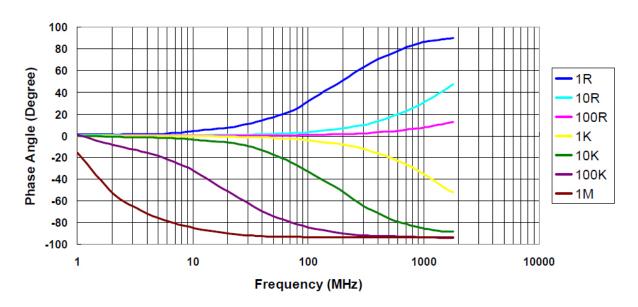

MLFA13 Pulse Voltage (100 Ohm)

MLFA25/MLFA1 Continuous Pulse (100 Ohm)

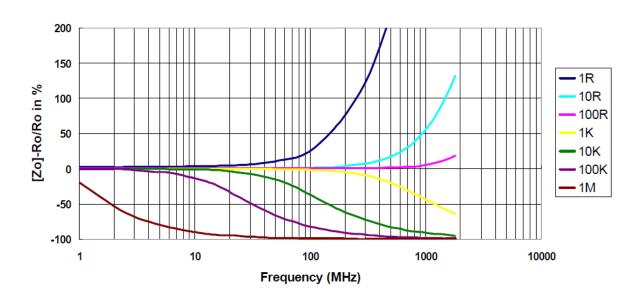
MLFA25/MLFA1 Pulse Voltage (100 Ohm)

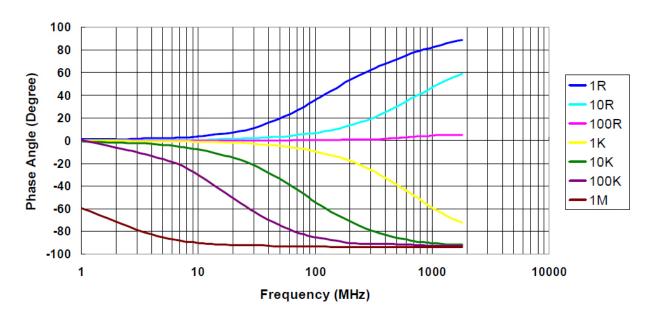


Frequency Behavior

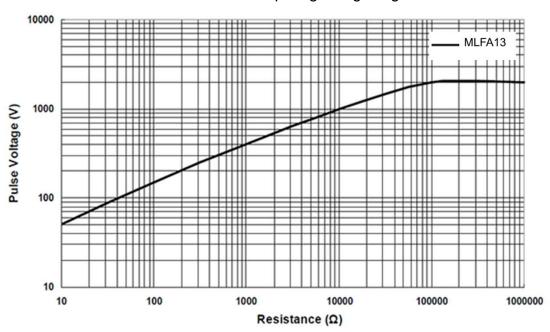

Resistors are designed to function according to Ohmic laws. This is basically true of resistors for frequencies up to 100 kHz. At higher frequencies, there is an additional contribution to the impedance by an ideal resistor switched in series with a coil and both switched parallel to a capacitor. The values of the capacitance and inductance are mainly determined by the dimensions of the terminations and the conductive path length.

The environment surrounding components has a large influence on the behavior of the component on the printed-circuit board.

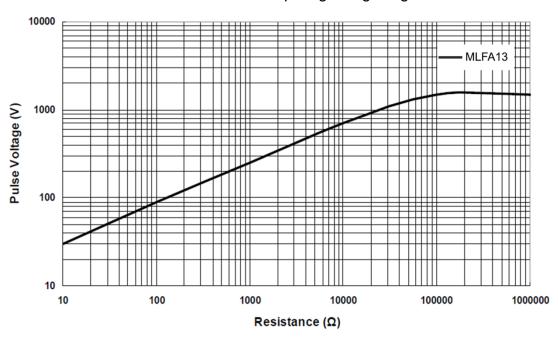

MLFA25 Frequency versus Impedance


MLFA25 Frequency versus Phase Angle

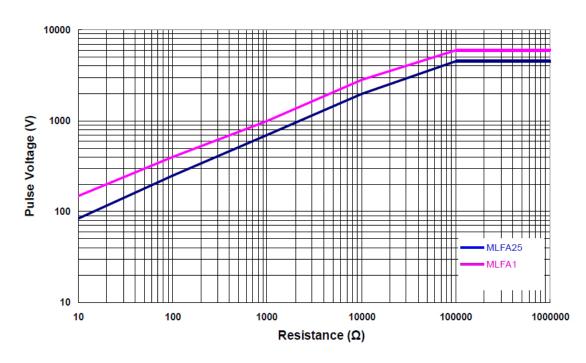
MLFA1 Frequency versus Impedance



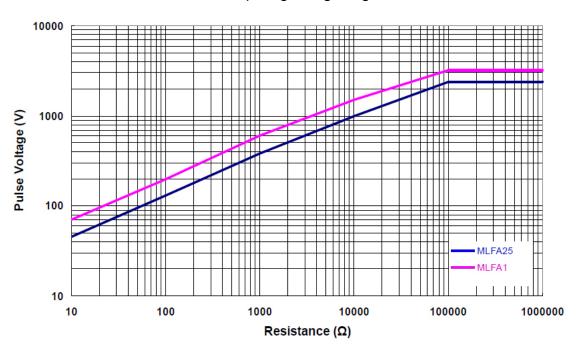
Lightning Surge


Resistors are tested in accordance with IEC 60 115-1 using both $1.2/50\mu s$ and $10/700\mu s$ pulse shapes. The limit of acceptance is a shift in resistance of less than 0.5% from the initial value.

MLFA13 1.2/50µs Lightning Surge



10


MLFA13 10/700µs Lightning Surge

MLFA25/MLFA1 1.2/50µs Lightning Surge

10/700µs Lightning Surge

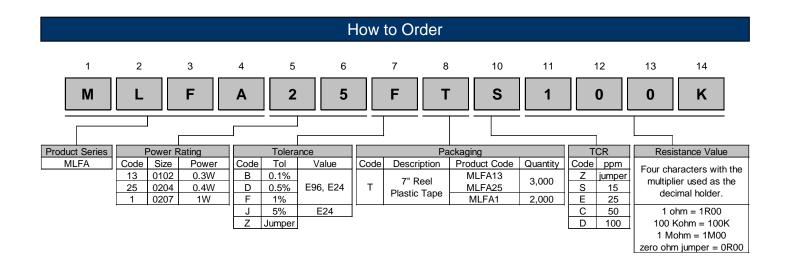
RoHS Compliance

Stackpole Electronics has joined the worldwide effort to reduce the amount of lead in electronic components and to meet the various regulatory requirements now prevalent, such as the European Union's directive regarding "Restrictions on Hazardous Substances" (RoHS 2). As part of this ongoing program, we periodically update this document with the status regarding the availability of our compliant components. All our standard part numbers are compliant to EU Directive 2011/65/EU of the European Parliament.

	RoHS Compliance Status						
Standard Product Series	Description	Package / Termination Type	Standard Series RoHS Compliant	Lead-Free Termination Composition	Lead-Free Mfg. Effective Date (Std Product Series)	Lead-Free Effective Date Code (YY/WW)	
MLFA	Metal Film Melf Resistor (AEC-Q200 Qualified)	SMD	YES	100% Matte Sn	Always	Always	

Conflict Metals" Commitment

We at Stackpole Electronics, Inc. are joined with our industry in opposing the use of metals mined in the "conflict region" of the Eastern Democratic Republic of the Congo (DRC) in our products. Recognizing that the supply chain for metals used in the electronics industry is very complex, we work closely with our own suppliers to verify to the extent possible that the materials and products we supply do not contain metals sourced from this conflict region. As such, we are in compliance with the requirements of Dodd-Frank Act regarding Conflict Minerals.


12

Compliance to "REACH"

We certify that all passive components supplied by Stackpole Electronics, Inc. are SVHC (Substances of Very High Concern) free and compliant with the requirements of EU Directive 1907/2006/EC, "The Registration, Evaluation, Authorization and Restriction of Chemicals", otherwise referred to as REACH. Contact us for complete list of REACH Substance Candidate List.

Environmental Policy

It is the policy of Stackpole Electronics, Inc. (SEI) to protect the environment in all localities in which we operate. We continually strive to improve our effect on the environment. We observe all applicable laws and regulations regarding the protection of our environment and all requests related to the environment to which we have agreed. We are committed to the prevention of all forms of pollution.

Rev Date: 04/11/2018